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Abstract. In this paper, we propose a hybrid implicit iteration method for a finite of asymptotically nonexpansive

mappings in Banach spaces. Under Opial’s condition, semicompact, condition (C) and liminfn→∞ d(xn,F(T )) =

0, we prove some strong and weak convergence theorems for this family of mappings using proposed iteration

method. The results presented in this paper extend and improve the corresponding results of Xu (2001), Zeng

(2006) and Jiang (2014).
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1. Introduction

Let E be a real Banach space and let K be a nonempty convex subset of E. A mapping T :

K→K is said to be nonexpansive if ‖T x−Ty‖≤ ‖x− y‖ for all x, y∈K. A mapping A : K→K

is said to be L-Lipschitzian if there exists a constant L > 0 such that ‖Ax−Ay‖ ≤ L‖x− y‖ for
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all x, y ∈ K, n ≥ 1. A mapping T : K → K is said to be asymptotically nonexpansive if there

exists a sequence {kn} ⊂ [1,∞) with limn→∞ kn = 1 such that ‖T nx−T ny‖ ≤ kn ‖x− y‖ for all

x, y ∈ K, n≥ 1.

Let K be a nonempty convex subset of E and let {Ti}N
i=1 be a finite family of nonexpansive

self-maps of K. In 2001, Xu and Ori [1] introduced the following implicit iteration method. For

any x0 ∈ K and {αn}∞

n=1 ⊂ (0,1) , the sequence {xn}∞

n=1 is generates as follows:

x1 = α1x0 +(1−α1)T1x1,

x2 = α2x1 +(1−α2)T2x2,

...

xN = αNxN−1 +(1−αN)TNxN

xN+1 = αN+1xN +(1−αN+1)T1xN+1

...

The scheme is expressed in compact form as

xn = αnxn−1 +(1−αn)Tnxn, ∀n≥ 1, (1.1)

where Tn = Tn(mod N) (here the mod N takes values in {1,2, · · · ,N}), they proved weak conver-

gence theorem in Hilbert spaces.

Let {Ti}N
i=1 be a finite family of nonexpansive self-maps of a real Hilbert space H and G : H→

H. Suppose that there exists some constants κ, η > 0 such that the mapping G is κ−Lipschitzian

and η−strongly monotone. Let {αn}∞

n=1 ⊂ (0,1), {λn}∞

n=1 ⊂ [0,1) and take a fixed number

µ ∈
(

0, 2η

κ2

)
. Zeng and Yao [2] introduced the following implicit hybrid iteration method. For
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an arbitrary initial point x0 ∈ H, the sequence {xn}∞

n=1 is generated as follows:

x1 = α1x0 +(1−α1) [T1x1−λ1µG(T1x1)] ,

x2 = α2x1 +(1−α2) [T2x2−λ2µG(T2x2)] ,

...

xN = αNxN−1 +(1−αN) [TNxN−λN µG(TNxN)]

...

This scheme can be expressed in a concise form as follows

xn = αnxn−1 +(1−αn)[Tnxn−λnµG(Tnxn)], ∀n≥ 1, (1.2.)

where Tn = Tn(mod N). By using the iteration scheme (1.2), they obtained the weak and strong

convergence theorems in Hilbert space. It is clear that if λn = 0, for all n≥ 1, then the implicit

iteration scheme (1.2) reduces to the implicit iteration process (1.1).

Recently, Jiang et al. [3] extended the results of Zeng and Yao from Hilbert spaces to Banach

spaces and proved weak and strong convergence theorems without the strong monotonicity

condition.

In this paper, motivated and inspired by above results, an hybrid implicit iteration method for

a finite of asymptotically nonexpansive mappings is introduced. Weak and strong convergence

theorems are obtained. The results presented in this paper improve and extend the corresponding

results of [1], [2] and [3].

The hybrid implicit iteration method.

Let E be a real uniformly convex Banach space and let K be a nonempty closed convex subset

of E. Let {Ti}N
i=1 : K→K be N asymptotically nonexpansive mappings with F=∩N

n=1F(Ti) 6= /0

and A : K→ K be an L-Lipschitzian mapping. Assume that {αn} is a real sequences in (0,1),
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{λn} ⊂ [0,1), µ is positive fixed constant. Then defined a sequence {xn} by

x1 = α1x0 +(1−α1) [T1x1−λ1µA(T1x1)] ,

x2 = α2x1 +(1−α2) [T2x2−λ2µA(T2x2)] ,

...

xN = αNxN−1 +(1−αN) [TNxN−λN µA(TNxN)]

xN+1 = αN+1xN +(1−αN+1)
[
T 2

1 xN+1−λN+1µA
(
T 2

1 xN+1
)]

...

x2N = α2Nx2N−1 +(1−α2N)
[
T 2

N x2N−λ2N µA
(
T 2

N x2N
)]

x2N+1 = α2N+1x2N +(1−α2N+1)
[
T 3

1 x2N+1−λ2N+1µA
(
T 3

1 x2N+1
)]

... (1.3)

which is called hybrid implicit iteration for a finite family of asymptotically nonexpansive map-

pings {T1,T2, · · · ,TN}.

For each n ≥ 1, it can be written as n = (k−1)N + i, where i = i(n) ∈ {1,2, · · · ,N} , k =

k (n)≥ 1 is a positive integer and k (n)→ ∞ as n→ ∞. Therefore, we can (1.3) in the following

compact form:

xn = αnxn−1 +(1−αn)T λnxn

= αnxn−1 +(1−αn)
[
T k(n)

i(n) xn−λnµA
(

T k(n)
i(n) xn

)]
, n≥ 1. (1.4)

The main purpose of this paper is to study the convergence of an iterative sequence {xn}

defined by (1.4) to a common fixed point for a finite family of asymptotically nonexpansive

mappings under Opial’s condition , semicompact, condition
(
C
)

and liminfn→∞ d (xn,F(T )) =

0, respectively.

2. Preliminaries

For the sake of convenience, we first recall some definitions and conclusions.
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A Banach space E is said to satisfy the Opial’s condition [4] if, for all sequences {xn}

in E such that {xn} converges weakly to some x ∈ E, the inequality limsupn→∞ ‖xn− x‖ <

limsupn→∞ ‖xn− y‖ holds for all y 6= x in E.

Definition 1.1. Let D be a closed subset of E and T : D→ D be a mapping.

(i) T is said to be demiclosed at the origin if for each sequence {xn} in D, the conditions

xn→ x0 weakly and T xn→ 0 strongly imply T x0 = 0.

(ii) T is said to be demicompact if any bounded sequence {xn} in D such that {xn−T xn}

converges, there exists a subsequence say
{

xn j

}
of {xn} that strongly to some x∗ in D.

(iii) T is said to be semicompact if for any bounded sequence {xn} in D such that {xn−T xn}→

0 as n→ ∞, there exists a subsequence say
{

xn j

}
⊂ {xn} such that xn j → x∗ in D.

Senter and Datson [5] established a relation between condition (A) and demicompactness.

They showed that the condition (A) is weaker than demicompactness for a nonexpansive map-

ping T defined on a bounded set. A mapping T : K→ K with F (T ) = {x ∈ K : T x = x} 6= /0 is

said to satisfy condition (A) [5] if there exists a nondecreasing function f : [0,∞)→ [0,∞) with

f (0) = 0 and f (t) > 0 for all t ∈ (0,∞) such that ‖x−T x‖ ≥ f (d (xn,F (T ))) for all x ∈ K,

where d (xn,F (T )) = inf{‖x−q‖ : q ∈ F (T )}.

A family {Ti}N
i=1 of N of N self mappings of K with F = ∩N

n=1F (Ti) 6= /0 is said to satisfy

condition
(
C
)

on K [6] if there exists a nondecreasing function f : [0,1]→ [0,1] with f (0) = 0

and f (t) > 0 for all t ∈ (0,∞) and all x ∈ K such that ‖x−Tlx‖ ≥ f (d (xn,F (T ))) for at least

one Tl , l = 1,2, · · · ,N; or in other words, at least one of the Ti’s satisfies condition (A).

Lemma 2.1. [7] Let {an}, {bn} and {δn} be sequences of nonnegative real numbers satisfying

the inequality

an+1 ≤ (1+δn)an +bn, ∀n≥ 1,

if ∑
∞
n=1 bn < ∞ and ∑

∞
n=1 δn < ∞, then limn→∞ an exists. If in addition {an} has a subsequence

which converges strongly to zero, then limn→∞ an = 0.

Lemma 2.2. [8] Let E be a uniformly convex Banach space and let a, b be two constants with

0 < a < b < 1. Suppose that {tn} ⊂ [a,b] is a real sequence and {xn}, {yn} are two sequences
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in E. Then the conditions

lim
n→∞
‖tnxn +(1− tn)yn‖= d, limsup

n→∞

‖xn‖ ≤ d, limsup
n→∞

‖yn‖ ≤ d

imply that limn→∞ ‖xn− yn‖= 0, where d ≥ 0 is a constant.

Lemma 2.3. [9] Let E be a real uniformly convex Banach space, K a nonempty closed con-

vex subset of E, and T : K → K be an asymptotically nonexpansive mapping. Then I− T is

demiclosed at zero, i.e. for each sequence {xn} in K, if {xn} converges weakly to q ∈ K and

{(I−T )xn} converges strongly to 0, then (I−T)q = 0.

3. Main results

Theorem 3.1. Let E be a real uniformly convex Banach space, K be a nonempty closed convex

subset of E. Let {Ti}N
i=1 be N asymptotically nonexpansive self mappings of K with sequences{

h(i)n

}
, 1 ≤ i ≤ N and F = ∩N

n=1F(Ti) 6= /0; A : K → K is an L-Lischitzian mapping. Let the

hybrid implicit iteration {xn} be the sequence defined by (1.4), where {αn} is real sequences in

(0,1) and {λn} ⊂ [0,1) satisfy the following conditions:

(i) there exists constants τ1, τ2 ∈ (0,1) such that τ1 ≤(1−αn)≤ τ2, ∀n≥ 1;

(ii) ∑
∞
n=1 λn < ∞;

(iii) ∑
∞
n=1 (hn−1)< ∞, where hn = max

{
h(1)n , h(2)n , · · · ,h(N)

n

}
.

Then

(1) limn→∞ ‖xn− p‖= 0 exists, ∀p ∈ F;

(2) limn→∞ ‖Tlxn− xn‖= 0, ∀l = 1,2, · · · ,N,

(3) {xn} converges strongly to a common fixed point of {T1,T2, · · · ,TN} if and only if liminfn→∞

d (xn,F) = 0.
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Proof. (1) Since F= ∩N
n=1F(Ti) 6= /0, for each p ∈ F, we have

‖xn− p‖

=
∥∥∥αnxn−1 +(1−αn)

[
T k(n)

i(n) xn−λnµA
(

T k(n)
i(n) xn

)]
− p
∥∥∥

≤ αn ‖xn−1− p‖+(1−αn)
∥∥∥T k(n)

i(n) xn−T k(n)
i(n) p

∥∥∥
+(1−αn)λnµ

∥∥∥A
(

T k(n)
i(n) xn

)∥∥∥
≤ αn ‖xn−1− p‖+(1−αn)

∥∥∥T k(n)
i(n) xn−T k(n)

i(n) p
∥∥∥

+(1−αn)λnµ

∥∥∥A
(

T k(n)
i(n) xn

)
−A(p)

∥∥∥+(1−αn)λnµ ‖A(p)‖

≤ αn ‖xn−1− p‖+(1−αn)hk(n) ‖xn− p‖

+(1−αn)λnµhk(n)L‖xn− p‖+(1−αn)λnµ ‖A(p)‖ . (3.1)

Since hk(n)→ 1 (n→ ∞), we know that
{

hk(n)
}

is bounded, and there exists R1 ≥ 1 such that

hk(n) ≤ R1. Let dn = hk(n)−1, ∀n≥ 1, by condition (iii) we have
∞

∑
n=1

dn < ∞. Hence, we have

‖xn− p‖

≤ αn ‖xn−1− p‖+(1−αn)(1+dn)‖xn− p‖

+(1−αn)λnµR1L‖xn− p‖+(1−αn)λnµ ‖A(p)‖

≤ αn ‖xn−1− p‖+(1−αn +dn)‖xn− p‖

+λnµR1L‖xn− p‖+λnµ ‖A(p)‖ . (3.2)

Simplifying we have

‖xn− p‖

≤ ‖xn−1− p‖+ dn

αn
‖xn− p‖+ λnµR1L

αn
‖xn− p‖+ λnµ

αn
‖A(p)‖

= ‖xn−1− p‖+ dn +λnµR1L
αn

‖xn− p‖+ λnµ

αn
‖A(p)‖ . (3.3)
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By condition (i) we have 1− τ2 ≤ αn. Therefore, from (3.3) we get

‖xn− p‖

≤ ‖xn−1− p‖+ dn +λnµR1L
1− τ2

‖xn− p‖+ λnµ

1− τ2
‖A(p)‖

≤
1− τ2

1− τ2− (dn +λnµR1L)
‖xn−1− p‖

+
λnµ

1− τ2− (dn +λnµR1L)
‖A(p)‖

=

(
1+

dn +λnµR1L
1− τ2− (dn +λnµR1L)

)
‖xn−1− p‖

+
λnµ

1− τ2− (dn +λnµR1L)
‖A(p)‖ . (3.4)

Since condition (ii) and
∞

∑
n=1

dn < ∞, we know that dn +λnµR1L→ 0 as n→ ∞; therefore there

exists a positive integer n0 such that dn +λnµR1L ≤ 1−τ2
2 , for all n ≥ n0. It follows from (3.4)

that

‖xn− p‖ ≤
(

1+
2(dn +λnµR1L)

1− τ2

)
‖xn−1− p‖+ 2λnµ

1− τ2
‖A(p)‖

= (1+δn)‖xn−1− p‖+bn, (3.5)

where δn = 2(dn+λnµR1L)
1−τ2

and bn = 2λnµ

1−τ2
‖A(p)‖ . By using condition (ii) and

∞

∑
n=1

dn < ∞, it is

easy to see that

∞

∑
n=1

δn < ∞;
∞

∑
n=1

bn < ∞.

It follows from Lemma 2.1 that limn→∞ ‖xn− p‖ exists.

(2) Since {‖xn− p‖} is bounded, there exists R2 > 0 such that

‖xn− p‖ ≤ R2, ∀n≥ 1. (3.6)

We can assume that

lim
n→∞
‖xn− p‖= r, (3.7)
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where r ≥ 0 is some number. Since {‖xn− p‖} is a convergent sequence, {xn} is bounded

sequence in K. Let

‖xn− p‖=
∥∥∥αn (xn−1− p)+(1−αn)

(
T λnxn− p

)∥∥∥ . (3.8)

By condition (ii), hk(n) ≤ R1,
∞

∑
n=1

dn < ∞ and (3.6), (3.7), we have that

lim sup
n→∞

∥∥∥T λnxn− p
∥∥∥

= lim sup
n→∞

∥∥∥T k(n)
i(n) xn−λnµA

(
T k(n)

i(n) xn

)
− p
∥∥∥

≤ lim sup
n→∞

∥∥∥T k(n)
i(n) xn−T k(n)

i(n) p
∥∥∥

+ lim sup
n→∞

λnµ

∥∥∥A
(

T k(n)
i(n) xn

)
−A

(
T k(n)

i(n) p
)∥∥∥

+ lim sup
n→∞

λnµ

∥∥∥A
(

T k(n)
i(n) p

)∥∥∥
≤ lim sup

n→∞

hk(n) ‖xn− p‖+ lim sup
n→∞

λnµLhk(n) ‖xn− p‖

+ lim sup
n→∞

λnµ

∥∥∥A
(

T k(n)
i(n) p

)∥∥∥
≤ lim sup

n→∞

(1+dn)‖xn− p‖+ lim sup
n→∞

λnµLR1R2

+ lim sup
n→∞

λnµ

∥∥∥A
(

T k(n)
i(n) p

)∥∥∥
≤ r. (3.9)

Since E is a uniformly convex Banach space, from (3.7), (3.8), (3.9) and Lemma 2.2 we have

that

lim
n→∞

∥∥∥xn−1−T λnxn

∥∥∥= 0. (3.10)

From (3.10), we have that

‖xn− xn−1‖ =
∥∥∥(αn−1)xn−1 +(1−αn)T λnxn

∥∥∥
≤ (1−αn)

∥∥∥xn−1−T λnxn

∥∥∥
→ 0 (as n→ ∞) . (3.11)
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By (3.11), we obtain that

lim
n→∞
‖xn+l− xn‖= 0, ∀l = 1,2, · · · ,N. (3.12)

It follows from (3.10) and (3.11) that

∥∥∥xn−T λnxn

∥∥∥ ≤ ‖xn− xn−1‖+
∥∥∥xn−1−T λn xn

∥∥∥
→ 0 (as n→ ∞) . (3.13)

From (3.13) and condition (ii), we obtain

‖xn−T k(n)
i(n) xn‖ ≤

∥∥∥xn−T λnxn

∥∥∥+∥∥∥T λnxn−T k(n)
i(n) xn

∥∥∥
≤

∥∥∥xn−T λnxn

∥∥∥+λnµ

∥∥∥A
(

T k(n)
i(n) xn

)∥∥∥
≤

∥∥∥xn−T λnxn

∥∥∥+λnµ

(
LR1R2 +

∥∥∥A
(

T k(n)
i(n) p

)∥∥∥)
→ 0 (as n→ ∞) . (3.14)

It follows from (3.11) and (3.14) that

‖xn−Tnxn‖

≤
∥∥∥xn−T k(n)

i(n) xn

∥∥∥+∥∥∥T k(n)
i(n) xn−Tnxn

∥∥∥
≤

∥∥∥xn−T k(n)
i(n) xn

∥∥∥+h1 {hn−1 ‖xn− xn−N‖

+
∥∥∥T k(n−N)

i(n−N)
xn−N− xn−N

∥∥∥+‖xn−N− xn‖
}

=
∥∥∥xn−T k(n)

i(n) xn

∥∥∥+h1 (1+hn−1)‖xn− xn−N‖

+h1

∥∥∥T k(n−N)
i(n−N)

xn−N− xn−N

∥∥∥
→ 0 (as n→ ∞) . (3.15)
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For any l = 1,2, · · · ,N, from (3.12) and (3.15), we have

‖xn−Tn+lxn‖

≤ ‖xn− xn+l‖+‖xn+l−Tn+lxn+l‖+‖Tn+lxn+l−Tn+lxn‖

≤ (1+L)‖xn− xn+l‖+‖xn+l−Tn+lxn+l‖

→ 0 (as n→ ∞) . (3.16)

Consequently, we obtain

lim
n→∞
‖xn−Tlxn‖= 0, ∀l = 1,2, · · · ,N. (3.17)

(3) The necessity is obvious. Therefore, we will prove the sufficiency. For arbitrary p ∈ F, it

follows from (3.5) that

‖xn− p‖ ≤ (1+δn)‖xn−1− p‖+bn, ∀n≥ n0,

where ∑
∞
n=1 δn < ∞ and ∑

∞
n=1 bn < ∞. Thus, we have

d (xn,F)≤ (1+δn)d (xn−1,F)+bn, ∀n≥ n0. (3.18)

It follows from Lemma 2.1 and (3.18) that limn→∞ d (xn,F) exists. By the assumption, we have

limn→∞ d (xn,F) = 0.

Next we prove that the sequence {xn} is a Cauchy sequence in K. In fact, since ∑
∞
n=1 δn < ∞,

1+ t ≤ et for all t > 0, by (3.5) , we have

‖xn− p‖ ≤ eδn ‖xn−1− p‖+bn. (3.19)

Thus, for any positive integers m, n, from (3.19) it follows that

‖xn+m− p‖ ≤ eδn+m ‖xn+m−1− p‖+bn+m

≤ eδn+m
[
eδn+m−1 ‖xn+m−2− p‖+bn+m−1

]
+bn+m

≤ . . .

≤ e∑
n+m
i=n δi ‖xn− p‖+ e∑

n+m
i=n+1 δi

n+m

∑
i=n+1

bi

≤ Q‖xn− p‖+Q
∞

∑
i=n+1

bi,
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where Q = e∑
∞
i=1 δi < ∞. Since limn→∞ d (xn,F) = 0 and ∑

∞
i=1 bi < ∞, for any given ε > 0, there

exists a positive integer n0 such that d (xn,F)<
ε

4(Q+1) , ∑
∞
i=n+1 bi <

ε

2Q for any n≥ n0. Hence,

there exists p1 ∈ F such that d (xn, p1)<
ε

2(Q+1) for any n≥ n0. Consequently, for all m≥ 1 and

for any n≥ n0, we have

‖xn+m− xn‖ ≤ ‖xn+m− p1‖+‖xn− p1‖

≤ Q‖xn− p1‖+Q
∞

∑
i=n+1

bi +‖xn− p1‖

< ε.

This implies that {xn} is a Cauchy sequence in K. Therefore there exists q ∈ K such that {xn}

converges strongly to q. Since limn→∞ ‖xn−Tlxn‖ = 0 for each l ∈ {1,2, · · · ,N}, it follows

from Lemma 2.3 that q ∈ F. This completes the proof.

Remark 3.2. Theorem 3.1 extends the results of [2] and [3] from a finite family of nonexpansive

mappings to a finite family of asymptotically nonexpansive mappings.

Theorem 3.3. Let E be a real uniformly convex Banach space, K be a nonempty closed con-

vex subset of E. Let {T1,T2, · · · ,TN} :K → K be N asymptotically nonexpansive mappings of

K with sequences
{

h(i)n

}
, 1 ≤ i ≤ N and F = ∩N

n=1F(Ti) 6= /0 and one of the mappings in

{T1,T2, · · · ,TN} is semicompact. A : K → K is an L-Lischitzian mapping. Let {αn} is real

sequences in (0,1) and {λn} ⊂ [0,1) satisfying the following conditions:

(i) there exists constants τ1, τ2 ∈ (0,1) such that τ1 ≤(1−αn)≤ τ2, ∀n≥ 1;

(ii) ∑
∞
n=1 λn < ∞;

(iii) ∑
∞
n=1 (hn−1)< ∞, where hn = max

{
h(1)n , h(2)n , · · · ,h(N)

n

}
.

Then the hybrid implicit iteration {xn} be defined by (1.4) converges strongly to a common

fixed point of {T1,T2, · · · ,TN} .

Proof. Suppose that Ti0 is semicompact for some i0 ∈ {1,2, · · · ,N}. By Theorem 3.1, {xn} is

bounded, and limn→∞ ‖xn−Ti0xn‖ = 0. Then there exists a subsequence
{

xn j

}
of {xn} such

that limn j→∞ xn j → p ∈ K. Theorem 3.1 guarantees that limn j→∞

∥∥xn j −Tlxn j

∥∥ = 0 for all l ∈

{1,2, · · · ,N}. Therefore, we have ‖p−Ti p‖ = 0 for all l ∈ {1,2, · · · ,N} . This implies that
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p ∈ F. Since limn→∞ ‖xn− p‖ exists, therefore limn→∞ ‖xn− p‖ = 0; that is, {xn} converges

strongly to a fixed point of {T1,T2, · · · ,TN} is K. This completes the proof.

Remark 3.4. Theorem 3.3 in this work improves Theorem 11 of Jiang et al. [3]. Also, the

condition that {T1,T2, · · · ,TN} be semicompact is replaced by the weaker assumption that any

one of {T1,T2, · · · ,TN} be semicompact.

From Theorem 3.1, we can easily show the following strong convergence theorem, whose

proof is omitted.

Theorem 3.5. Let E be a real uniformly convex Banach space and let K be a nonempty closed

convex subset of E. Let {T1,T2, · · · ,TN} : K→ K be N asymptotically nonexpansive mappings

satisfying condition (C) and A : K→ K is an L-Lischitzian mapping.
{

h(i)n

}
, 1 ≤ i ≤ N, {αn}

and {λn} are sequences as in Theorem 3.3. If F = ∩N
n=1F(Ti) 6= /0 then the hybrid implicit

iteration {xn} be defined by (1.4) converges strongly to a common fixed point of {T1,T2, · · · ,TN}.

Theorem 3.6. Let E be a real uniformly convex Banach space satisfying Opial’s condition, K

be a nonempty closed convex subset of E. Let {T1,T2, · · · ,TN} :K → K be N asymptotically

nonexpansive mappings and A : K→ K be an L-Lischitzian mapping.
{

h(i)n

}
, 1≤ i≤ N, {αn}

and {λn} are sequences as in Theorem 3.3. If F = ∩N
n=1F(Ti) 6= /0 then the hybrid implicit

iteration {xn} be defined by (1.4) converges weakly to a common fixed point of {T1,T2, · · · ,TN}.

Proof. Since E is uniformly convex, every bounded subset of E is weakly compact. Also,

since {xn} is a bounded subset in K, there exists a subsequence
{

xn j

}
⊂ {xn} such that

{
xn j

}
converges weakly to p ∈ K and limn j→∞

∥∥xn j −Tlxn j

∥∥= 0 for all l ∈ {1,2, · · · ,N} . By Lemma

2.3, we have that (I−Tl) p = 0, i.e. p ∈ F (Tl) . By arbitrariness of l ∈ {1,2, · · · ,N}, we have

p ∈ F= ∩N
n=1F(Ti).

Next, we prove that {xn} converges weakly to p. Suppose {xnk} be another subsequence of

{xn} which converges weakly to some p1 ∈ K and p 6= p1. By the similar method as above we
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have p1 ∈ F= ∩N
n=1F(Ti), then by Opial’s condition, we have

lim
n→∞
‖xn− p‖ = lim

n j→∞

∥∥xn j − p
∥∥

< lim
n j→∞

∥∥xn j − p1
∥∥

= lim
n→∞
‖xn− p1‖

= lim
nk→∞

‖xnk− p1‖

< lim
nk→∞

‖xnk− p‖

= lim
n→∞
‖xn− p‖ .

This is a contradiction. Hence, p = p1, which implies that {xn} converges weakly to p. This

completes the proof.

Remark 3.7. Theorem 3.6 in this work extends Theorem 9 of Jiang et al. [3] to case of a hybrid

implicit iteration for a finite of asymptotically nonexpansive mappings.

Conflict of Interests

The authors declare that there is no conflict of interests.

Acknowledgements

The authors would like to thank the referees for their helpful comments.

REFERENCES

[1] H. K. Xu and R. G. Ori, An implicit iteration process for nonexpansive mappings, Numer. Funct. Anal.

Optim. 22 (2001). 767-773.

[2] L.C. Zeng and J. C.Yao, Implicit iteration scheme with perturbed mapping for common fixed points of a finite

family of nonexpansive mappings, Nonlinear Anal. 64 (2006), 2507-2515.

[3] Q. Jiang, J. Wang and J. Huang, Hybrid implicit iteration process for a finite family of non-self nonexpansive

mappings in uniformly convex Banach spaces, J. Appl. Math. 2014 (2014), Article ID 238053.

[4] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull.

Amer. Math. Soc. 73 (1967), 591-597.

[5] H. F. Senter, Jr. Dotson, Approximating fixed points of nonexpansive mappings, Proc. Amer. Math. Soc. 44

(1974), 375-380.



HYBRID IMPLICIT ITERATION METHODS 15

[6] C. E. Chidume and B. Ali, Weak and strong convergence theorems for finite families of asymptotically

nonexpansive mapings in Banach spaces, J. Math. Anal. Appl. 330 (2007), 377-378.

[7] M. O. Osilike, S. C. Aniagbosor and B. G. Akuchu, Fixed points of asymptotically demicontractive mappings

in arbitrary Banach spaces, PanAmer. Math. J. 12 (2002), 77-78.

[8] J. Schu, Weak and strong convergence to fixed points of asymptotically nonexpansive mappings, Bull. Aust.

Math. Soc. 43 (1991), 153-159.

[9] Y. J. Cho, H. Zhou and G. Guo, Weak and strong convergence theorems for three-step iterations with errors

for asymptotically nonexpansive mapings, Comput. Math. Appl. 47 (2004), 707-717.


