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Abstract. In this paper we established some fixed point results for multivalued mapping in a complete fuzzy metric

space through rational inequality. Our results unify, extend and generalize several results in the existing literature.

Some applications are also given to support our results.
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1. Introduction and Preliminaries

The notion of fuzzy sets was first present by Zadeh [10]. Later on many authors worked on its

different areas. Kramosil and et al. [6] with the help of defintion of fuzzy sets introduced a new

concept of fuzzy metric space and prove some fixed point results. Grabiec [3] proved the fixed

point theorem of banach and eldestien to fuzzy metric space in the sence of Kramosil and et al.

In 1994, George et al. [2] modified the definiton of Kramosil et al. and proved many fixed point

results. Later on Lopez et al. [8] used this concept in the sence of compact sets and present

the definition of Hausdorff fuzzy metric and prove many well known results. In this paper we
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also used the notion of Hausdorff fuzzy metric with the help of multivalued mapping and prove

some results presented by Vishal et al. [5].

Definition 1.1 [2]: A binary operation ∗ : [0,1]× [0,1]→ [0,1] is said to be a continuous t-norm

if it is satisfies the following conditions:

i) ∗ is associative and commutative;

ii) ∗ is continuous;

iii) a∗1 = a for all a ∈ [0,1];

iv) a∗b≤ c∗d whenever a≤ c and b≤ d for each a,b,c,d ∈ [0,1].

Definition 1.2 [6]: Let X be any non empty set, ∗ be a continuous t-norm, and F is a fuzzy set

on X2× [0,∞). Consider the following conditions holds for all x,y,z ∈ X and t,s > 0:

F1) F(x,y,0) = 0;

F2) F(x,y, t) = 1 iff x = y;

F3) F(x,y, t) = F(y,x, t);

F4) F(x,y, t + s)≥ F(x,z, t)∗F(z,y,s);

F5) F(x,y, .) : (0,∞)→ [0,1] is left-continuous;

Then, F is called a fuzzy metric on X and F(x,y, t) denotes the degree of nearness between x

and y with to respect t.

Example 1.3 [2]: Let (X ,d) be a metric space. Define a∗b = ab (or a∗b = min{a,b}) for all

a,b ∈ [0,1]. Then, one can define a fuzzy metric by

F(x,y, t) =
t

t +d(x,y)
, for all x,y ∈ X and t > 0.

called (X ,F,∗) is a fuzzy metric space induced by d(x,y).

Definition 1.4 [5]: Let (X ,F,∗) be a fuzzy metric space. Then, we have

i) A sequence {xn} in X is said to be convergent to a point x∈X denoted xn→ x, if lim
n→∞

F(xn,x, t)=

1 for each t > 0.

ii) A sequence {xn} in X is said to be a Cauchy sequence, if lim
n→∞

F(xn,xn+p, t) = 1 for each

t > 0, p > 0.

iii) A fuzzy metric space (X ,F,∗) in which every Cauchy sequence is convergent is called a

complete fuzzy metric space.

Definition 1.5 [1]: Let B be any non empty subset of a fuzzy metric space (X ,F,∗) for a ∈ X
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and t > 0 then,

F(a,B, t) = sup{F(a,b, t) : b ∈ B}.

Definition 1.6 [8]: Let (X ,F,∗) be a fuzzy metric space. Define a function HF on Ĉ0(X)×

Ĉ0(X)× (0,∞) by

HF(A,B, t) = min
{

inf
a∈A

F(a,B, t), inf
b∈B

F(A,b, t)
}
,

for all A,B ∈ Ĉ0(X) and t > 0, where Ĉ0(X) is the collection of all nonempty compact subsets

of X .

Lemma 1.7 [8]: Let (X ,F,∗) be a complete fuzzy metric space. Then, for each a∈X , B∈ Ĉ0(X)

and for t > 0 there exists bo ∈ B such that

F(a,bo, t) = F(a,B, t).

Lemma 1.8 [9]: Let (X ,F,∗) be a complete fuzzy metric space, such that (Ĉ0(X),HF ,∗) is a

hausdorff fuzzy metric space on Ĉ0(X). Then, for all A,B ∈ Ĉ0(X), for each a ∈ A and for t > 0

there exists ba ∈ B, satisfies F(a,B, t) = F(a,ba, t), then

HF(A,B, t)≤ F(a,ba, t).

Proof: If

HF(A,B, t) = inf
a∈A

F(a,B, t),

then,

HF(A,B, t)≤ F(a,B, t). for each a ∈ A

Hence, for each a ∈ A there exist ba ∈ B satisfies

F(a,B, t) = F(a,ba, t),

then

HF(A,B, t)≤ F(a,ba, t).
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Now, if

HF(A,B, t) = inf
b∈B

F(A,b, t)

≤ inf
a∈A

F(a,B, t)≤ F(a,B, t) = F(a,ba, t)

HF(A,B, t) ≤ F(a,ba, t).

for some ba ∈ B. Hence, in both cases, we proved the result.

Lemma 1.9 [5]: If there exist k ∈ (0,1), such that

M(x,y,kt)≥M(x,y, t)

for all x,y,∈ X and t ∈ (0,∞), then x = y.

2. Main Results

Now, we present our main results.

Theorem 2.1: Let (X ,M,∗) be a fuzzy metric space and S : X → Ĉ0(X) be a multivalued

mapping satisfying the following conditions:

(2.1) a) lim
t→∞

F(x,y, t) = 1,

(2.2) b) HF(Sx,Sy,kt)≥ µ(x,y, t).

where

µ(x,y, t) = min
{

F(y,Sy, t)[1+F(x,Sx, t)]
[1+F(x,y, t)]

,F(x,y, t)
}
,

for all x,y ∈ X and k ∈ (0,1). Then, S has a fixed point.

Proof: Let xo be an arbitrary point in X . We construct a sequence {xn} of points in X as follows:

Let x1 ∈ X such that x1 ∈ Fxo. By using lemma 1.8, we can choose x2 ∈ Fx1 such that

F(x1,x2, t)≥ HF(Sxo,Sx1, t). for all t > 0

By induction we have xn+1 ∈ Sxn, for all n ∈ N, satisfying

F(xn,xn+1, t)≥ HF(Sxn−1,Sxn, t). for all t > 0
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Now,

F(x2,x3, t) ≥ HF(Sx1,Sx2, t)

≥ µ(x1,x2,
t
k
). by (2.2) (2.3)

where,

µ(x1,x2,
t
k
) = min

{
F(x2,Sx2,

t
k)[1+F(x1,Sx1,

t
k)]

[1+F(x1,x2,
t
k)]

,F(x1,x2,
t
k
)

}
,

= min
{

F(x2,x3,
t
k)[1+F(x1,x2,

t
k ]

[1+F(x1,x2,
t
k)]

,F(x1,x2,
t
k
)

}
,

= min
{

F(x2,x3,
t
k
),F(x1,x2,

t
k
)
}
.

If,

F(x1,x2,
t
k
)≥ F(x2,x3,

t
k
).

Then, by (2.3), we have

F(x2,x3, t)≥ F(x2,x3,
t
k
).

So, by the Lemma 1.9 nothing left to prove. Now, if we have

F(x2,x3,
t
k
)≥ F(x1,x2,

t
k
).

Then, again by Lemma 1.8, we have

F(x2,x3, t) ≥ F(x1,x2,
t
k
)≥ HF(Sxo,Sx1,

t
k
)

≥ µ(xo,x1,
t

k2 ). (2.4)

where,

µ(xo,x1,
t

k2 ) = min

{
F(x1,Sx1,

t
k2 )[1+F(xo,Sxo,

t
k2 )]

[1+F(xo,x1,
t

k2 )]
,F(xo,x1,

t
k2 )

}
,

= min

{
F(x1,x2,

t
k2 )[1+F(xo,x1,

t
k2 )]

[1+F(xo,x1,
t

k2 )]
,F(xo,x1,

t
k2 )

}
,

= min
{

F(x1,x2,
t

k2 ),F(xo,x1,
t

k2 )
}
.

If,

F(xo,x1,
t

k2 )≥ F(x1,x2,
t

k2 ).
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Then, again by lemma 1.9, nothing left to prove. If

F(x1,x2,
t

k2 )≥ F(xo,x1,
t

k2 ),

then, by (2.4) we have

F(x2,x3, t)≥ F(xo,x1,
t

k2 ).

Consequently,

(2.5) F(xn,xn+1, t)≥ F(xo,x1,
t

kn )

Now, for m > n, that is m = n+ p we have

F(xn,xn+p, t)≥ F(xn,xn+1,
t
p
)∗ · · ·(p) · · · ∗F(xn+p−1,xn+p,

t
p
).

By using (2.5), we get

F(xn,xn+p, t)≥ F(xo,x1,
t

pkn )∗ · · ·(p) · · · ∗F(xo,x1,
t

pkn ).

Now, taking Lim
n→∞

and using (2.1) we have

Lim
n→∞

F(xn,xn+p, t) = 1.

Hence, {xn} is a Cauchy sequence in X . So, by the completeness there exists z ∈ X , such that

xn→ z. Now,we claim that z is a fixed point for S. Consider,

F(z,Sz, t) ≥ F(z,xn+1,(1− k)t)∗F(xn+1,Sz,kt),

≥ F(z,xn+1,(1− k)t)∗HF(Sxn,Sz,kt),

≥ F(z,xn+1,(1− k)t)∗µ(xn,z, t). (2.6)

where,

µ(xn,z, t) = min
{

F(z,Sz, t)[1+F(xn,Sxn, t)]
[1+F(xn,z, t)]

,F(xn,z, t)
}
,

= min
{

F(z,Sz, t)[1+F(xn,xn+1, t)]
[1+F(xn,z, t)]

,F(xn,z, t)
}
.

Taking Lim
n→∞

in above inequality, we get

µ(z,z, t) = min{F(z,Sz, t),1} .
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If

F(z,Sz, t)≥ 1,

then, we get z is the fixed point for S. If

F(z,Sz, t)≤ 1,

then, by (2.6)

F(z,Sz, t)≥ F(z,xn+1,(1− k)t)∗F(z,Sz, t).

Now, taking Lim
n→∞

we get

z ∈ Sz.

Let us define Φ = {ϕ/ϕ : [0,1]→ [0,1]} is a continuous function such that ϕ(1) = 1, ϕ(0) = 0,

ϕ(a)> a for each 0 < a < 1.

Theorem 2.2: Let (X ,M,∗) be a fuzzy metric space and S : X → Ĉ0(X) be a multivalued

mapping satisfying the following conditions :

a) lim
t→∞

F(x,y, t) = 1,

b) HF(Sx,Sy,kt)≥ ϕ{µ(x,y, t)}.

where

µ(x,y, t) = min
{

F(y,Sy, t)[1+F(x,Sx, t)]
[1+F(x,y, t)]

,F(x,y, t)
}
,

for all x,y ∈ X , k ∈ (0,1) and ϕ ∈Φ. Then, S has a fixed point.

Proof: Since ϕ ∈Φ. This implies that ϕ(a)> a for each 0 < a < 1. Thus from above condition

HF(Sx,Sy,kt)≥ ϕ{µ(x,y, t)} ≥ µ(x,y, t)

Now, applying Theorem 2.1, we obtain the desired result.
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3. Application

Let us define the following function

θ : [0,∞)→ [0,∞) as θ(t) =
∫ t

0
λ (t)dt ∀ t > 0

be a nondecreasing and continuous function. Morever, for each δ > 0, λ (δ )> 0. Also λ (t) = 0

iff t = 0.

Theorem 3.1: Let (X ,M,∗) be a fuzzy metric space and S : X → Ĉ0(X) be a multivalued map-

ping satisfying the following conditions :

a) lim
t→∞

F(x,y, t) = 1,

b)
∫ HF (Sx,Sy,kt)

0
λ (t)dt ≥

∫
µ(x,y,t)

0
λ (t)dt.

where,

µ(x,y, t) = min
{

F(y,Sy, t)[1+F(x,Sx, t)]
[1+F(x,y, t)]

,F(x,y, t)
}
,

for all x,y ∈ X , λ ∈ θ and k ∈ (0,1). Then S has a fixed point.

Proof: Let us take λ (t)dt = 1, and applying Theorem 2.1 we get the desired result.

Theorem 3.2: Let (X ,M,∗) be a fuzzy metric space and S : X → Ĉ0(X) be a multivalued map-

ping satisfying the following conditions :

a) lim
t→∞

F(x,y, t) = 1,

b)
∫ HF (Sx,Sy,kt)

0
λ (t)dt ≥ ϕ

{∫
µ(x,y,t)

0
λ (t)dt

}
.

where,

µ(x,y, t) = min
{

F(y,Sy, t)[1+F(x,Sx, t)]
[1+F(x,y, t)]

,F(x,y, t)
}
,
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for all x,y ∈ X , λ ∈ θ , ϕ ∈Φ and k ∈ (0,1). Then S has a fixed point.

Proof: Since ϕ ∈ Φ. This implies that ϕ(a) > a for each 0 < a < 1, taking λ (t)dt = 1, and

applying Theorem 2.2 we get the desired result.
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