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Abstract. In a recent paper [15], Saddeek introduced the so-called class of generalized strictly pseudo-contractive

mappings and established some strong convergence theorems for the generalized modified Krasnoselskii iterative

processes developed by Saddeek [15] for finding the minimum norm solutions of certain nonlinear equations when

p ≥ 2 in the framework of uniformly convex Banach spaces. This paper develops the work presented in [15] by

considering separately the case in which 1 < p < 2.

Keywords: nonlinear equation; minimum norm; p-generalized strictly pseudo-contractive mappings; generalized

duality mapping; uniformly convex Banach spaces.

2010 AMS Subject Classification: 47H05, 47H10, 47H17.

1. Introduction

The class of generalized strictly pseudo-contractive mappings which has been recently de-

vised by [15] is very general class in the sense that it includes, as special cases, generalized Lip-

schizian mappings, λ -strictly pseudo-contractive mappings, λ -Lipschitzian mappings, pseudo-

contractive mappings and nonexpansive mappings. Such mappings arise in the area of nonlinear

functional analysis and its applications, especially those pertinent to fixed point theory and its
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applications to nonlinear pseudomonotone equations and variational inequalities.

Construction of new iterative methods for finding the minimum norm solutions of nonlinear

equations involving p-generalized strictly pseudo-contractive mappings and generalized dual-

ity mappings in the framework of uniformly convex Banach spaces plays a very significant role

in the analysis of many nonlinear fluid dynamics phenomena.

The Krasnoselskii iterative process (see, for example, [9]) is a representative of one of the oldest

iterative methods for the solution of nonlinear equations.

In 2008, Saddeek et al. [17, Theorem 2] showed that the Krasnoselskii iterative sequence con-

verges weakly to the solution of nonlinear equation of generalized Lipschitzian mappings in

Hilbert spaces. In the same vein, they have presented an application to the stationary problem

of filtration.

In an attempt to obtain strong convergence, in 2014, Saddeek [16] proposed the so-called mod-

ified Krasnoselskii iterative by boundary point method in the sense of He et al. [6] for finding

the minimum norm solutions of certain nonlinear equations with generalized Lipschitzian map-

pings in Hilbert spaces and proved its strong convergence under some assumptions.

Recently, Saddeek [15] extended the results of Saddeek [16] to the so-called generalized mod-

ified Krasnoselskii iterative process with the so-called generalized strictly pseudo-contractive

and generalized duality mappings and obtained some strong convergence theorems to the min-

imum norm solutions of certain nonlinear equations when p ≥ 2 in the setting of uniformly

convex Banach spaces.

The aim of this paper is to develop the study, started in [15] by considering separately the case

in which 1 < p < 2.

2. Preliminaries

Let X be a real Banach space with norm ‖.‖X , let X∗ be the dual space of X with norm ‖.‖X∗

and 〈., .〉 be the duality pairing between X∗ and X . We denote by→ and ⇀ the strong and weak

convergence, respectively. Denote by N the set of all natural numbers.

A Banach space X is said to be uniformly convex if, for any ε ∈ (0,2], there exists an increasing

positive function δ (ε) with δ (0) = 0 such that, for any x,y ∈ X with ‖x‖X ≤ 1, ‖y‖X ≤ 1 and
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‖x− y‖X ≥ ε, ‖x+ y‖X ≤ 2(1−δ (ε)) holds.

It is known (see, for example, [20]) that every uniformly convex space is reflexive and each real

Hilbert space is uniformly convex. Moreover, the sobolev space
◦

W
(1)

p (1 < p < ∞) is uniformly

convex.

Let U = {x ∈ X : ‖x‖X = 1}. Then the norm of X is said to be Gâteaux differentiable (see, for

example, [14]) if

lim
t→0+

[‖x+ ty‖X −‖x‖X ]

t
.

exists for any x,y ∈U. The norm of X is said to be uniformly Gâteaux differentiable if, for any

y ∈U, the above limit exists uniformly for all x ∈U.

Every Hilbert space and
◦

W
(1)

p (1 < p < ∞) space has a uniformly Gâteaux differentiable norm.

The mapping Jp : X → 2X∗, p > 1 defined by

Jpx = {x∗ ∈ X∗ : 〈x∗,x〉= ‖x‖p
X , ‖x

∗‖X∗ = ‖x‖p−1
X , ∀x ∈ X},

is called the generalized duality mapping.

For p = 2, the mapping J2 from X to 2X∗ is called the normalized duality mapping.

It is well known (see, for example, [18, Theorem 1.1.17] and [14]) that if X is uniformly convex

and has a uniformly Gâteaux differentiable norm, then the generalized duality mapping is single

valued (we denote it by jp), bijective (the inverse of jp will be denoted by j−1
p ), and if C is a

nonempty closed and convex subset of X , then there exists a unique x ∈ C such that ‖x‖X =

infz∈C ‖z‖X , i.e., the metric projection of the origin onto C. Moreover,

(1) 〈 jpx,z− x〉 ≥ 0,∀z ∈C.

If X =H is a Hilbert space and p= 2, then the generalized duality mapping becomes the identity

mapping of H.

The set of solutions of the variational inequality (1) is denoted by V I(C, jp), and the element

x ∈V I(C, jp), is called the minimum norm solution of (1).

It is well known (see, for example [8] and [11]) that the set V I(C, jp) is a nonempty closed and

convex subset of X .
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In [5], Glowinski et al. proved the following properties for the mapping jp when 1 < p < 2:

(2) ∃α > 0, ∀x,y ∈ X α‖x− y‖2
X ≤ (‖x‖X +‖y‖X)

2−p〈 jpx− jpy,x− y〉,

(3) ∃M > 0, ∀x,y ∈ X ‖ jpx− jpy‖X∗ ≤M‖x− y‖p−1
X .

The following lemma can be founded in [1] and [7].

Lemma 2.1. Let X be a real uniformly convex Banach space and has a uniformly Gâteaux

differentiable norm with X∗ as its dual. Then,

(4) ‖x∗+ y∗‖2
X∗ ≤ ‖x∗‖2

X∗+2〈y∗, j−1
p x∗− y〉, ∀x,y ∈ X ,x∗,y∗ ∈ X∗.

.

Let us recall the following definition.

Definition 2.1.(see, [4], [11], [13]) For all x,y ∈ X , the mapping T : X → X∗ is said to be as

follows:

(i) pseudomonotone, if it is bounded and for every sequence {xn} ⊂ X such that

xn ⇀ x ∈ X and limsup
n→∞

〈T xn,xn− x〉 ≤ 0

we have

liminf
n→∞

〈T xn,xn− y〉 ≥ 〈T x,x− y〉;(5)

(ii) coercive, if

〈T x,x〉 ≥ ρ(‖x‖X)‖x‖X , lim
ξ→+∞

ρ(ξ ) = +∞;

(iii) demiclosed at 0, if whenever {xn} is a sequence in X with xn ⇀ x and T xn → 0, then

T x = 0;

(iv) potential, if

∫ 1

0
(〈T (t(x+ y),x+ y〉−〈T (tx),x〉) dt =

∫ 1

0
〈T (x+ ty),y〉 dt.
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Finally, we state the following elementary result on convergence of real sequences.

Lemma 2.2. (see, for example [12]) Assume that {an} is a sequence of nonnegative real num-

bers such that

an+1 ≤ (1− γn)an +bn + cn, ∀ n ∈ N,

where {γn} is a sequence in (0,1), {bn} and {cn} are two sequences in R+
such that

(a) ∑
∞
n=0 γn = ∞; (b) limsupn→∞

bn
γn
≤ 0; (c) ∑

∞
n=0 cn < ∞. Then limn→∞ an = 0.

3. Generalized iterative for a class of generalized p-strictly pseudo-contractive
mappings

Let p ∈ (1,2) and let T : X → X∗ be a nonlinear mapping. We say that T is p-generalized

strictly pseudo-contractive, if for any x,y ∈ X there exist real valued functions ri(x,y) ≥ 0, i =

1,2 satisfying supx,y∈X{∑2
i=1 ri(x,y)}= λ ′ < ∞ such that

(6) ‖T x−Ty‖p
X∗ ≤ r1(x,y)‖ jpx− jpy‖p

X∗+ r2(x,y)‖( jp−T )x− ( jp−T )y‖p
X∗.

If p≥ 2, then the class of mappings T satisfying (6) with the generalized duality mapping jp is

known as the generalized strictly pseudo-contractive class in the light of Saddeek [15].

We note that for p = 2, r1(x,y) = 1, and r2(x,y) = λ ∈ [0,1) (resp., ri(x,y) = 1, i = 1,2),

the class of p-generalized strictly pseudo-contractive mappings coincides with the class of λ -

strictly pseudo-contractive (resp., strictly pseudo-contractive) mappings, which was introduced

in 1967 by Browder et al. [3] in Hilbert spaces. In addition, if p = 2 and r2(x,y) = 0 (resp.,

r1(x,y) = L2,L > 0,r2(x,y) = 0), then we obtain from (6) the class of generalized Lipschitzian

(resp., Lipschitzian) mappings, which was studied by Saddeek et al. [17]; if p= 2 and r1(x,y) =

1, r2(x,y) = 0 (resp., r1(x,y) = λ ∈ (0,1),r2(x,y) = 0), then we obtain the class of nonexpansive

(resp., λ -contractive) mappings.

For a closed convex subset C of X and T : C→ X∗, the sequence {xn} ⊂C, defined by x0 ∈C

and

(7) jpxn+1 = (1− τ h(xn)) jpxn + τ T jp
τ xn, n≥ 0,
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where τ ∈ (0,1), T jp
τ = (1−τ) jp+τ T, jp is the generalized duality mapping, and h : C→ [0,1]

is a function defined as follows (see [6]):

(8) h(x) = inf{α ∈ [0,1] : αx ∈C}, ∀ x ∈C,

is called the generalized modified Krasnoselskii iterative process, in the sense of Saddeek [15].

If X = H, p = 2, h(xn) = 1, and T jp
τ is replaced by T, then (7) reduces to the so-called Kras-

noselskii iterative process (see, [9]).

4. Main results

Now we are in position to state our main result:

Theorem 4.1. Let C be a closed convex subset of a uniformly convex Banach space X whose

norm is uniformly Gâteaux differentiable, let X∗ be its dual, and let jp : X → X∗, 1 < p < 2

be the generalized duality mapping. Let T be a nonlinear mapping from C to X∗ satisfying the

condition (3). For x ∈C and τ ∈ (0,1), let Sh(x) : C→ X∗ be defined by

(9) Sh(x)x = (h(x)+ τ−1) jpx− τT x,

where h(x) is given by (8).

Suppose that the constant appearing in (3) satisfies

(10) M = inf
x,y∈C

[‖x‖X +‖y‖X ]
p−2‖x− y‖2−p

X .

Suppose that Sh(x) is bounded, coercive, potential, demiclosed at 0, and p-generalized strictly

pseudo-contractive with

(11) sup
x,y∈C

[r1(x,y)+(2−h(x))pr2(x,y)] = (λ ′)p < ∞,

then, for arbitrary x0 ∈C, 0 < τ = min{1, α

λ ′} the generalized modified Krasnoselskii iterative

sequence {xn} ⊂C defined by

(12) jpxn+1 = jpxn− τ Sh(xn)xn, n≥ 0,
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with {h(xn)} satisfying ∑
∞
n=0 h(xn) = ∞, converges strongly to x̄ ∈ V I(S−1

h(x̄)0, jp), where x̄ =

pro jS−1
h(x̄)0

(0), and S−1
h(x̄)0 = F̃(h(x̄) jp,T

jp
τ ) = {x̄ ∈C : h(x̄) jpx̄ = T jp

τ x̄}.

Proof. Analogously to [15], we define F : C→ (−∞,∞] by

(13) F(x) =
∫ 1

0
〈Sh(x)(tx),x〉 dt, ∀x ∈C.

We first show that {xn} is bounded. It suffices to show that

(14) {xn} ⊂ S0, ‖xn‖X ≤ R0, n≥ 0,

where S0 = {x ∈C : F(x)≤ F(x0)}, and R0 = supx∈S0
‖x‖X .

Using the definition of S0, it follows directly that x0 ∈ S0. For n ∈ N, assume that xn ∈ S0.

We now verify that xn+1 ∈ S0. In fact, by the definition of Sh(x), (3), (6), and (11), we have

‖Sh(xn)(xn+1 + t(xn− xn+1)) −Sh(xn)(xn)‖p
X∗ ≤ r1‖ jp(xn+1 + t(xn− xn+1))− jpxn‖p

X∗

+r2‖( jp−Sh(xn))(xn+1 + t(xn− xn+1))− ( jp−Sh(xn))(xn)‖p
X∗

≤ r1‖ jp(xn+1 + t(xn− xn+1))− jp(xn)‖p
X∗

+r2[(2− τ−h(xn))‖ jp(xn+1 + t(xn− xn+1))− jp(xn)‖X∗

+τ‖T (xn+1 + t(xn− xn+1))−T (xn)‖X∗]
p

≤ (1− t)p(p−1)Mp[r1 +(2−h(xn))
pr2]×‖xn+1− xn‖p(p−1)

X

≤Mp[r1 +(2−h(xn))
pr2]×‖xn− xn+1‖

p(p−1)
X

≤Mp
λ
′p×‖xn− xn+1‖

p(p−1)
X , for each t ∈ [0,1].

This implies that

(15) ‖Sh(xn)(xn+1 + t(xn− xn+1))−Sh(xn)(xn)‖X∗ ≤Mλ
′‖xn− xn+1‖p−1

X .

Therefore, we have

(16) |〈Sh(xn)(xn+1 + t(xn− xn+1))−Sh(xn)(xn),xn− xn+1〉| ≤Mλ
′‖xn− xn+1‖p

X .
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Since Sh(x) is potential, it follows from (13) (see [15]) that

F(xn)−F(xn+1) ≥ −
∫ 1

0
|〈Sh(xn)(xn+1 + t(xn− xn+1))−Sh(xn)xn,xn− xn+1〉| dt

+ 〈Sh(xn)xn,xn− xn+1〉.(17)

Now from (2), (12), (16), and (17), we have

F(xn)−F(xn+1) ≥ −Mλ
′‖xn− xn+1‖p

X +
1
τ
〈 jpxn− jpxn+1,xn− xn+1〉

≥ −Mλ
′‖xn− xn+1‖p

X +
α

τ
[‖xn‖X +‖xn+1‖X ]

p−2‖xn− xn+1‖2
X .(18)

(18) together with (10) give the following inequality

(19) F(xn)−F(xn+1)≥ µ[‖xn‖X +‖xn+1‖X ]
p−2‖xn− xn+1‖2

X , µ =
α

τ
−λ

′ > 0.

This implies that F(xn+1)≤ F(xn)≤ F(x0), and so we obtain xn+1 ∈ S0. Thus, {xn} is bounded

and so are {Sh(xn)xn}, { jpxn}, {T
jp

τ xn}, and {Fxn}.

Moreover, we obtain from (19) that the sequence {Fxn) is nonincreasing, and thus, we have

{Fxn} converges.

This implies from (19) that

(20) lim
n→∞
‖xn− xn+1‖X = 0,

since p < 2.

Hence, from (3) and (12), we obtain

(21) lim
n→∞
‖ jpxn− jpxn+1‖X∗ = 0,

and

(22) lim
n→∞
‖Sh(xn)xn‖X∗ = 0.

Since the sequence {xn} is bounded, there exists a subsequence {xnk}⊂{xn} such that limk→∞ ‖xnk−

x̄‖X exists.

From the demiclosedness of Sh(x), it follows from (22) that x̄ ∈ S−1
h(x̄)0.

By similar argument as in [15], (20), (21), (22), and (1), we conclude immediately that

(23) limsup
n→∞

〈Sh(xn)(xn),xn+1− x̄〉 ≤ 0, ∀x̄ ∈ S−1
h(x̄)0,
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(24) limsup
n→∞

〈− jpx̄,xn+1− x̄〉 ≤ 0,

and

(25) x̄ ∈ S−1
h(x̄)0∩V I(S−1

h(x̄)0, jp),

where x̄ is the metric projection of the origin onto S−1
h(x̄)0.

Now using Lemma 2.1, Lemma 2.2, ∑
∞
n=0 h(xn) = ∞, and the arguments of [15], we can obtain

(26) lim
n→∞
‖ jpxn− jpx̄‖X∗ = 0.

Now, from (2), we obtain

‖xn− x̄‖2
X ≤ 1

α
[‖xn‖X +‖x̄‖X ]

2−p〈 jpxn− jpx̄,xn− x̄〉

≤ 1
α
[‖xn‖X +‖x̄‖X ]

2−p‖ jpxn− jpx̄‖X∗‖xn− x̄‖X .(27)

Using again the boundedness of {xn}, (20) and (21), we obtain that limn→∞ ‖xn− x̄‖X = 0, i.e.,

limn→∞ xn = x̄ and the theorem is proved.

Remark 4.1.

1) Theorem 4.1 is a generalization of both Theorem 4.1 of Saddeek [16] and Theorem 2 of

Saddeek et al. [17].

2) If X = H and p = 2, then restriction (10) of Theorem 4.1 can be removed. In this case,

Theorem 4.1 reduces to Corollary 2.1 of Saddeek [15].

5. Application to nonlinear operator equations

Consider the equation

(28) Ax = f ,

with an arbitrary f ∈ X∗ where A : C→ X∗ is a given nonlinear operator.

It is known (see, for example, [19]) that if A is bounded, pseudomonotone and coercive on a

separable reflexive Banach space, then there exists a solution x ∈ X of equation (28).
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Such equations occur in many applications, in particular, in the description of stationary prob-

lems of filtration of incompressible liquid and the theory of soft shells (see, for example [2],

[10]).

Now we shall apply Theorem 4.1 to the case when C is a closed convex subset of the sobolev

space
◦

W
(1)

p (1 < p < ∞), Ω⊂ Rn is a bounded domain with Lipschitz continuous boundary.

Theorem 5.1. Let A : C→ X∗ be a pseudomonotone, coercive, and potential operator such that

(29) ‖Ax−Ay‖X∗ ≤ ‖ jpx− jpy‖X∗,∀x,y ∈C.

Then for any x0 = x ∈C, the iterative sequence constructed by

(30) jpxn+1 = jpxn− τ(Axn− f ), n≥ 0,

with τ satisfying the condition 0 < τ = min{1,α}, converges strongly to the minimum norm

solution of the equation (28). Provided that ∑
∞
n=0 h(xn) = ∞.

Proof. Following the same arguments as in the proof of Theorem 3.1 of Saddeek [15], we can

prove this theorem.
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Villars, Paris (1969).

[12] L. S. Liu, Ishikawa and Mann iterative process with errors for nonlinear strongly accretive mappings in

Banach spaces, J. Math. Anal. Appl. 194 (1995), 114-125.

[13] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull.

Amer. Math. Soc. 73 (4) (1967), 591-597.

[14] S. Reich, On the asymptotic behavior of nonlinear semigroups and the range of accretive operators, J. Math.

Anal. Appl 79 (1981), 113-126.

[15] A. M. Saddeek, On the convergence of a generalized modified Krasnoselskii iterative process for generalized

strictly pseudo-contractive mappings in uniformly convex Banach spaces, Fixed Point Theory Appl. 2016

(2016), Article ID 60.

[16] A. M. Saddeek, A strong convergence theorem for a modified Krasnoselskii iteration method and its applica-

tion to seepage theory in Hilbert spaces, J. Egypt. Math. Soc. 22 (2014), 476-480.

[17] A. M. Saddeek, S. A. Ahmed, Iterative solution of nonlinear equations of the pseudo-monotone type in

Banach spaces, Arch. Math. (BRNO) 44 (2008), 273-281.
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