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Abstract. In this paper two new fixed point results are studied. The first result is a theorem that involves (α−β )

type rational singlevalued contractions, in the sense of Geraghty type operators. The second result consists of

multivalued modified Hardy Rogers operators, namely the existence of the fixed point, data dependence, local

version involving two metrics and homotopy theorems involving two metrics are studied.
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1. Preliminaries for rational Geraghty type mappings

The first idea of the present article is that in the third section we want to prove a theorem

based on rational α − β−contractions, so we remind the necessary concepts for this type of

operators. For more informations, we let the reader follow [13]. We recall the following crucial

concepts.
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Definition 1.1. Let X be a nonempty set and α : X×X → [0,∞) be a mapping.

Then f : X → X is called α−admissible, if it satisfies the following condition

for each x,y ∈ X , with α(x,y)≥ 1 =⇒ α ( f x, f y)≥ 1.

Definition 1.2. The mapping α : X×X → [0,∞) is called transitive, if

for each x,y,z ∈ X , with α(x,y)≥ 1 and α(y,z)≥ 1, we have α(x,z)≥ 1.

Moreover, let’s denote by Y the set of all functions β : [0,∞)→ [0,1), satisfying lim
n→∞

β (tn) =

1 =⇒ lim
n→∞

tn = 0.

Also, we recall the definition of α−β−contractions, given by Sintunavarat in [13].

Definition 1.3. Let (X ,d) be a metric space. A mapping f : X → X is called an −α −

β−contraction, if there exists α : X×X → [0,∞) and β ∈ Y , such that

[α(x,y)−1+δ∗]
d( f x, f y) ≤ δ β (d(x,y))d(x,y), for each x,y ∈ X , with 1 < δ ≤ δ∗.

In [13], the author proved a series of theorems such as : existence of a fixed point assuming

that the mapping f is continuous, a theorem in which the continuity is dropped and a theorem

for the uniqueness of fixed points. Also, this was based on the result of Geraghty [3] from

1973. Moreover, [8] Paunović et. al. extended the result of W. Sintunavarat in the framework

of b-metric spaces. Additionally, they have studied fixed points for a given mapping F : X→ X ,

such that

[α(x,y)−1+δ ]d(Fx,Fy) ≤ δ λM(x,y), for each x,y ∈ X , with 1 < δ , where λ ∈
[

0,
1
s

]
and

M(x,y) =
{

d(x,y),d(x,Fx),d(y,Fy),
d(x,Fy)+d(y,Fx)

2s

}
, where s was the coefficient of the

b-metric space (X ,d).

Furthermore, Zabihi and Razani [14] considered rational type operators and developed some

fixed point results in the framework of complete b-metric spaces. In the context of a metric

space (X ,d), a self mapping f on X was considered, satisfying

d( f x, f y)≤ β (d(x,y))M(x,y)+L ·N(x,y), where L≥ 0,

M(x,y)=max
{

d(x,y),
d(x, f x)d(y, f y)
1+d( f x, f y)

}
and N(x,y)=min

{
d(x, f x),d(x, f y),d(y, f x),d(y, f y)

}
.
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Moreover, since we want to define some other type of α −β−contractions, we shall recall

that the authors in [12] developed new fixed point theorems involving a new type of rational

contractive Geraghty mapping in b-metric spaces. This rational Geraghty mapping is introduced

as follows, in the case of metric spaces.

Definition 1.4. Let (X ,d) be a metric space. A mapping f : X→X is called a rational Geraghty

of type I, if d( f x, f y)≤ β (M (x,y))M (x,y), for each x,y ∈ X ,

where β ∈ Y and M(x,y) = max
{

d(x,y),
d(x, f x)d(y, f y)

1+d(x,y)
,
d(x, f x)d(y, f y)
1+d( f x, f y)

}
.

That means that in the third section, we will present a generalized theorem for rational Ger-

aghty mappings of type I.

2. Preliminaries for modified multivalued Hardy-Rogers

In this section, we recall some general notions in the framework of multivalued analysis

theory. Also, for the following preliminary notions and lemmas (such as : multivalued weakly

Picard operators, data dependence of the fixed point set, Haussdorf metric properties) we refer

the reader to [9], [10] and [11].

Let (X ,d) be a metric space and P(X) be the family of all nonempty subsets of X .

We denote by Pcl(X) the family of all nonempty subsets of X which are closed, by Pb(X)

the family of all nonempty subsets of X which are bounded and by Pcp(X) the family of all

nonempty subsets of X which are compact.

Furthermore, we consider the following functionals

D : P(X)×P(X)→ R+, D(A,B) = inf{d(a,b)/a ∈ A,b ∈ B}

H : Pb(X)×Pb(X)→ R+, H(A,B) = max{sup
a∈A

D(a,B),sup
b∈B

D(b,A)}

ρ : Pb(X)×Pb(X)→ R+, ρ(A,B) = sup{D(a,B)/a ∈ A}

We recall some useful results concerning the Haussdorf-Pompeiu generalized functional H.

Lemma 2.1. Let q > 1 and A,B ∈ P(X).

Then, for each a ∈ A, there exists b ∈ B such that d(a,b)≤ qH(A,B).

Lemma 2.2. Let (X ,d) be a metric space and A,B ∈ P(X).

Suppose that there exists η > 0 such that :
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(i) for each a ∈ A, there exists b ∈ B such that d(a,b)≤ η ,

(ii) for each b ∈ B, there exists a ∈ A such that d(a,b)≤ η .

Then H(A,B)≤ η .

Moreover, if Y is a nonempty subset of X and T : Y → P(X) a multivalued operator, then an

element x ∈ Y is

(a) a fixed point of T if and only if x ∈ T x;

(b) a strict fixed point of T if and only if {x}= T x;

Furthermore, we denote by FT the set of all fixed points of T and by (SF)T the set of all strict

fixed points of T .

We also remind the definition of the graphic of a multivalued operator, i.e.

GT := {(x,y) ∈ Y ×X/y ∈ T x}.

Definition 2.3. Let (X ,d) be a metric space and T : X → P(X) a multivalued operator. We say

that T is a multivalued weakly Picard operator (briefly MWP) if for each x ∈ X and for each

y ∈ T x, there exists a sequence (xn) ∈ X , satisfying the following

(i) x0 = x, x1 = y;

(ii) xn+1 ∈ T xn, for each n ∈ N;

(iii) the sequence (xn) is convergent to a fixed point of T .

Definition 2.4. Let (X ,d) be a metric space and T : X → P(X) an MWP.

Then T is called a c−weakly Picard operator, with c ∈ [0,∞), if there exists a selection t∞ of

T ∞, such that

d(x, t∞(x,y))≤ cd(x,y), for each (x,y) ∈ GT .

Now we focus our attention to the case of Hardy-Rogers type mappings. In [7], the basic

notion of singlevalued Hardy-Rogers contraction appeared.

Definition 2.5. Let (X ,d) be a metric space and T : X → X be an operator such that there exists

α,β ≥ 0 with α +β < 1, satisfying

d(T x,Ty)≤ αd(y,Ty) [1+d(x,T x)]
1+d(x,y)

+βd(x,y), for each x,y ∈ X .

In [6], Oprea A. developed a theorem concerning multivalued rational contractions (of Hardy

Rogers type).
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A multivalued operator T : X → P(X) is called a multivalued rational type contraction, if satis-

fies the following condition

H(T x,Ty)≤ αD(y,Ty) [1+D(x,T x)]
1+d(x,y)

+βd(x,y), for each x,y ∈ X .

Oprea has showed that the multivalued rational contractions are MWP-operators and developed

theorems for data dependence, fractal theory, Ulam-Hyers stability etc.

In [4], Kumari and Panthi introduced a new type of rational contractions, called modified Hardy-

Rogers contractions.

They introduced this as types of cyclic contractions for the case of families of dislocated metric

spaces.

We recall the notion of singlevalued contractions in the context of metric spaces, i.e. singleval-

ued operator that satisfies

d (T x,Ty)≤ αd(x,y)+βd(x,Ty)+ γd(y,T x)+δd(y,Ty)+η
d(y,Ty)[1+d(x,T x)]

1+d(x,y)
+

λ
d(y,Ty)+d(y,T x)

1+d(y,Ty)d(y,T x)
+µ

d(x,T x)[1+d(y,T x)]
1+d(x,y)+d(y,Ty)

.

Also, regarding Hardy Rogers mappings, our purpose to define the concept of modified Hardy-

Rogers contractions under the multivalued case shall be presented in the last section, along with

some fixed point results.

3. Some theorems regarding rational Geraghty α−β−contractions

In this section we present a generalized theorem for rational Geraghty mappings or type I,

using the α−admissibility conditions by Sintunavarat.

Moreover, we will use the same terminology from the first section.

Definition 3.1. Let (X ,d) be a metric space.

A mapping f : X → X is called an −α−β−rational Geraghty mapping of type I if and only if

there exists α : X×X → [0,∞) and β ∈ Y , such that

[α(x,y)−1+δ∗]
d( f x, f y) ≤ δ β (M(x,y))M(x,y), for each x,y ∈ X , with 1 < δ ≤ δ∗,

where M(x,y) = max
{

d(x,y),
d(x, f x)d(y, f y)

1+d(x,y)
,
d(x, f x)d(y, f y)
1+d( f x, f y)

}
.
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Our first main result of this section is the existence theorem for α − β−rational Geraghty

mappings of type I, using the assumption that f is continuous. The techniques used in the

theorem’s proof follow the same lines as in the theorems from [13].

Theorem 3.2. Let (X ,d) be a complete metric space and f : X→ X an α−β rational Geraghty

mapping of type I. Also, suppose that the following assumptions hold

(i) f is α−admissible,

(ii) α is transitive,

(iii) there exists x0 ∈ X, such that α(x0, f x0)≥ 1,

(iv) f is continuous.

Then, there exists x∗ ∈ X, such that x∗ = f x∗.

Proof. • Let x0 ∈ X satisfying α(x0, f x0)≥ 1.

Let’s consider the Picard sequence xn+1 = f xn, for each n ∈ N.

If there exists n ∈ N such that xn = xn−1, then xn−1 is a fixed point and the conclusion holds.

Suppose that for each n ∈ N, xn 6= xn−1. So d(xn−1,xn)> 0, for each n ∈ N.

From condition (i), we know that f is α−admissible. Since α(x0,x1) = α(x0, f x0) ≥ 1, then

we have that α(x1,x2) = α(x1, f x1) = α( f x0, f x1)≥ 1.

Inductively, one can show that α(xn−1,xn)≥ 1, for each n ∈ N.

Now, we estimate

δ
d(xn,xn+1) = δ

d( f xn−1, f xn) ≤ δ
d( f xn−1, f xn)
∗ ≤

[α(xn−1,xn)−1+δ∗]
d( f xn−1, f xn) ≤ δ

β (M(xn−1,xn))M(xn−1,xn),

so d(xn,xn+1)≤ β (M(xn−1,xn)) ·M(xn−1,xn).

Moreover, we make the following computations :

M(xn−1,xn) = max
{

d(xn−1,xn),
d(xn−1, f xn−1)d(xn, f xn)

1+d(xn−1,xn)
,
d(xn−1, f xn−1)d(xn, f xn)

1+d( f xn−1, f xn)

}
= max

{
d(xn−1,xn),

d(xn−1,xn)d(xn,xn+1)

1+d(xn−1,xn)
,
d(xn−1,xn)d(xn,xn+1)

1+d(xn,xn+1)

}
Since

d(xn−1,xn)d(xn,xn+1)

1+d(xn−1,xn)
= d(xn,xn+1) ·

d(xn−1,xn)

1+d(xn−1,xn)
≤ d(xn,xn+1) ·1 = d(xn,xn+1) and

d(xn−1,xn)d(xn,xn+1)

1+d(xn,xn+1)
= d(xn−1,xn) ·

d(xn,xn+1)

1+d(xn,xn+1)
≤ d(xn−1,xn) ·1 = d(xn−1,xn),

we get that M(xn−1,xn)≤ max{d(xn−1,xn),d(xn,xn+1)}, for each n ∈ N, n≥ 1.
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Now, we consider two cases.

(I) If max{d(xn−1,xn),d(xn,xn+1)}= d(xn,xn+1), then we get

d(xn,xn+1)≤ β (M(xn−1,xn)) ·d(xn,xn+1).

Since β (M(xn−1,xn))< 1, because β ∈ Y ,we get the contradiction d(xn,xn+1)< d(xn,xn+1).

(II) Then, only the second case is valid, i.e. max{d(xn−1,xn),d(xn,xn+1)}= d(xn−1,xn), that is

d(xn,xn+1)≤ β (M(xn−1,xn))d(xn−1,xn)< d(xn−1,xn), for each n ∈ N.

So, the sequence (d(xn,xn+1)) is strictly decreasing and nonnegative. It implies that there exists

r ≥ 0, such that d(xn,xn+1)→ r as n→ ∞.

Now, we show that r = 0.

Let’s suppose that r > 0.

We know that d(xn+1,xn+2) ≤ β (M(xn,xn+1))d(xn,xn+1). Taking the limit as n→ ∞, we get

that r ≤ lim
n→∞

β (M(xn,xn+1)) · r.

Because r > 0,we get that 1≤ lim
n→∞

β (M(xn,xn+1)).

But β (M(xn,xn+1))< 1, so lim
n→∞

β (M(xn,xn+1))≤ 1. From all this, we find that

lim
n→∞

β (M(xn,xn+1)) = 1. This implies that lim
n→∞

M(xn,xn+1) = 0.

Now, because M(xn,xn+1) is the maximum between three elements, if it’s limit is 0, so all the

elements have the limit 0. This means that d(xn,xn+1)→ 0. This is a contradiction !

•We now show that (xn) is a Cauchy sequence.

By reductio ad absurdum, let’s suppose that (xn) is not Cauchy. Then there exists ε > 0 and

there exists nk and mk, such that nk > mk ≥ k, with d(xmk ,xnk) and nk being the smallest index

satisfying the following

d(xmk ,xnk)≥ ε and d(xmk ,xnk−1)< ε.

By triangular inequality, we have that ε ≤ d(xmk ,xnk) ≤ d(xmk ,xnk−1) + d(xnk−1,xnk) < ε +

d(xnk−1,xnk).

Since d(xnk−1,xnk)→ 0, taking k→ ∞, it follows that

lim
k→∞

d(xmk ,xnk) = ε > 0.

Like in [13], since α is transitive, we observe that α(xmk ,xnk)≥ 1, k ∈ N.
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Now, we make the follow estimation

δ
d(xmk ,xnk ) ≤ δ

d(xmk ,xmk+1)+d(xmk+1,xnk+1)+d(xnk+1,xnk )

≤ δ
d(xmk ,xmk+1)+d(xnk ,xnk+1) ·δ d( f xmk , f xnk )

≤ δ
d(xmk ,xmk+1)+d(xnk ,xnk+1) ·δ d( f xmk , f xnk )

∗

≤ δ
d(xmk ,xmk+1)+d(xnk ,xnk+1) · [α(xmk ,xnk)−1+δ∗]

d( f xmk , f xnk )

≤ δ
d(xmk ,xmk+1)+d(xnk ,xnk+1) ·δ β (M(xmk ,xnk ))M(xmk ,xnk )

So, we get that

d(xmk ,xnk)≤ d(xmk ,xmk+1)+d(xnk ,xnk+1)+β (M(xmk ,xnk))M(xmk ,xnk).

Furthermore

lim
k→∞

M(xmk ,xnk) =

lim
k→∞

max
{

d(xmk ,xnk),
d(xmk ,xmk+1)d(xnk ,xnk+1)

1+d(xmk ,xnk)
,
d(xmk ,xmk+1)d(xnk ,xnk+1)

1+d(xmk+1,xnk+1)

}
.

Since d(xmk ,xmk+1)→ 0 and d(xnk ,xnk+1)→ 0 as k→ ∞, we get that

lim
k→∞

M(xmk ,xnk)≤ lim
k→∞

d(xmk ,xnk) = ε > 0.

In the above inequality, taking the limit as k→ ∞, we have that

ε ≤ lim
k→∞

β (M(xmk ,xnk)) · ε .

Using the fact that ε > 0, it follows that lim
k→∞

β (M(xmk ,xnk)) = 1, i.e. ≤ lim
k→∞

M(xmk ,xnk) = 0.

Since M(xmk ,xnk) is the maximum of three elements and it has the limit 0, also because

M(xmk ,xnk) ≥ d(xmk ,xnk), then all of the elements will have the limit 0, so d(xmk ,xnk)→ 0,

which is false; so (xn) is Cauchy.

• Since X is complete with respect to the metric d, there exists x∗ ∈ X such that x∗ = lim
n→∞

xn.

Because f is continuous, we infer that

x∗ = lim
n→∞

xn = lim
n→∞

f xn−1 = f
(

lim
n→∞

xn−1

)
= f x∗, so x∗ is a fixed point for the Geraghty-type

mapping f .

Now, also based on [13], we give a theorem where we dropped the continuity of the operator

f .

Theorem 3.3. Let (X ,d) be a complete metric space and f : X→ X an α−β rational Geraghty

mappings of type I.
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Let’s suppose that the following assumptions hold

(i) f is α−admissible,

(ii) α is transitive,

(iii) there exists x0 ∈ X, such that α(x0, f x0)≥ 1,

(iv) if (xn) is a sequence satisfying α(xn,xn+1) ≥ 1 and xn → x implies that α(xn,x) ≥ 1, for

each n ∈ N.

Then, there exists x∗ ∈ X, such that x∗ = f x∗.

Proof. In a similar manner like in the previous proof, we can show that (xn) is a Cauchy

sequence and therefore there exists x∗ ∈ X , such that xn→ x∗ when n→ ∞.

From (iv), we have that α(xn,x∗)≥ 1, for each n ∈ N.

We make the following estimation

δ
d(x∗, f x∗) ≤ δ

d(x∗,xn+1)+d(xn+1, f x∗) =

δ
d(x∗,xn+1) ·δ d( f xn, f x∗) ≤ δ

d(x∗,xn+1) ·δ d( f xn, f x∗)
∗

≤ δ
d(x∗,xn+1) · [α(xn,x∗)−1+δ∗]

d( f xn, f x∗)

≤ δ
d(x∗,xn+1) ·δ β (M(xn,x∗))M(xn,x∗).

So, we have that d(x∗, f x∗)≤ d(x∗,xn+1)+β (M(xn,x∗))M(xn,x∗)< d(x∗,xn+1)+M(xn,x∗).

Furthermore, we have that

M(xn,x∗) = max
{

d(xn,x∗),
d(xn,xn+1)d(x∗, f x∗)

1+d(xn,x∗)
,
d(xn,xn+1)d(x∗, f x∗)

1+d(xn+1, f x∗)

}
.

Taking the limit as n→∞ and using the fact that d(xn,xn+1)→ 0 and that d(xn,x∗)→ 0, we get

that M(xn−1,xn)→ max{ lim
n→∞

d(xn,x∗),0,0}= lim
n→∞

d(xn,x∗) = 0.

Thus d(x∗, f x∗)≤ lim
n→∞

d(xn+1,x∗)+ lim
n→∞

d(xn,x∗) = 0, so the conclusion holds properly.

Finally, we present the theorem for the uniqueness of the fixed point for the Geraghty type

operator.

Theorem 3.4. Let’s suppose that all the assumptions from the last theorem are satisfied.

Additionally, let’s suppose that one of the following assumptions are valid

(H0) if a,b are two fixed points , then α(a,b)≥ 1
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(H1) for each x,y ∈ X, there exists z ∈ X such that α(x,z)≥ 1 and α(y,z)≥ 1.

Then, f admits a unique fixed point.

Proof. Let x∗,y∗ two fixed points for the mapping f .

We consider two cases

(H0) We have that α(x∗,y∗)≥ 1.

From the Geraghty condition, it is easy to see that d(x∗,y∗) = 0, so the conclusion is true.

(H1) We have that there exists z ∈ X , with α(x∗,z)≥ 1 and α(y∗,z)≥ 1.

Since f is α-admissible, by induction, we get that α(x∗, f nz)≥ 1 and α(y∗, f nz)≥ 1.

We make the following estimation

δ
d(x∗, f n+1z) = δ

d( f x∗, f n+1z) ≤ δ
d( f x∗, f ( f nz))
∗ ≤

[α(x∗, f nz)−1+δ∗]
d( f x∗, f ( f nz)) ≤

δ
β (M(x∗, f nz))M(x∗, f nz)

So d(x∗, f n+1z)≤ β (M(x∗, f nz))M(x∗, f nz), for each n ∈ N.

Now we show that d(x∗, f nz)→ 0 as n→ ∞.

By reductio ad absurdum, we suppose that 0 < l := lim
n→∞

d(x∗, f nz)< ∞.

We know that

lim
n→∞

M(x∗, f nz) = lim
n→∞

max
{

d(x∗, f nz),
d(x∗, f x∗)d( f nz, f n+1z)

1+d(x∗, f nz)
,
d(x∗, f x∗)d( f nz, f n+1z)

1+d( f x∗, f n+1z)

}
.

Since x∗ is a fixed point for f , then lim
n→∞

M(x∗, f nz)≤ lim
n→∞

d(x∗, f nz) = l.

Taking the limit as n→ ∞ and using the fact that l > 0, we get that

l ≤ lim
n→∞

β (M(x∗, f nz)) · l. Now, because β ∈ Y , it follows that lim
n→∞

β (M(x∗, f nz)) ≤ 1. So, it

follows that lim
n→∞

β (M(x∗, f nz)) = 1. This means that lim
n→∞

M(x∗, f nz) = 0.

By the same reasoning as in the last proof, we get that lim
n→∞

d(x∗, f nz) = 0. Furthermore, in a

similar way, one can show that f nz→ y∗ as n→ ∞, so x∗ = y∗.

Remark 3.5. Taking α(x,y) = 1, for each x,y ∈ X , we get the existence and uniqueness for

Geraghty mappings of type I as a corollary.

4. Fixed Point Results for Modified Multivalued Hardy-Rogers contrac-
tions
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In this section we introduce the concept of modified multivalued Hardy-Rogers contractions

and then we present some theorems concerning the existence of a fixed point, data dependence,

Ulam-Hyers stability. Also, we present a local version involving two metrics and a homotopy

theorem.

The first main result of this section is a fixed point theorem for modified multivalued Hardy-

Rogers contractions, regarding the existence of fixed points for these types of self-mappings.

Theorem 4.1. Let (X ,d) be a complete metric space and T : X → Pcl(X) be a multivalued

modified Hardy Rogers operator, i.e.

H (T x,Ty)≤ αd(x,y)+βD(x,Ty)+ γD(y,T x)+δD(y,Ty)+

η
D(y,Ty)[1+D(x,T x)]

1+d(x,y)
+λ

D(y,Ty)+D(y,T x)
1+D(y,Ty)D(y,T x)

+µ
D(x,T x)[1+D(y,T x)]
1+d(x,y)+D(y,Ty)

,

with all the above coefficients positive.

If α +2β +η +µ +λ +δ < 1, then there exists p ∈ X, such that p ∈ FT .

Proof. Let’s consider x0 ∈ X an arbitrary point and q > 1.

Let x1 ∈ T x0.

If H (T x0,T x1) = 0, then T x0 = T x1, that means x1 ∈ T x1, i.e. x1 ∈ FT .

Let’s suppose that H (T x0,T x1) 6= 0.

For x1 ∈ T x0, we can choose x2 ∈ T x1, such that d(x1,x2)≤ q ·H (T x0,T x1).

This means that

d(x1,x2)≤ q

[
αd(x0,x1)+βD(x0,T x1)+ γD(x1,T x0)+δD(x1,T x1)+

η
D(x1,T x1)[1+D(x0,T x0)]

1+d(x0,x1)
+λ

D(x1,T x1)+D(x1,T x0)

1+D(x1,T x1) ·D(x1,T x0)
+µ

D(x0,T x0)[1+D(x1,T x0)]

1+d(x0,x1)+D(x1,T x1)

]

So, we have that

d(x1,x2)≤ q

[
αd(x0,x1)+βd(x0,x2)+ γd(x1,x1)+δd(x1,x2)+η

d(x1,x2)[1+d(x0,x1)]

1+d(x0,x1)
+

λ
d(x1,x2)+d(x1,x1)

1+D(x1,T x1) ·D(x1,T x0)
+µ

d(x0,x1)[1+d(x1,x1)]

1+d(x0,x1)+D(x1,T x1)

]
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Since

d(x1,x1) = 0,
d(x1,x2)

1+D(x1,T x1) ·D(x1,T x0)
≤ d(x1,x2),

that is 1+D(x1,T x1)·D(x1,T x0)≥ 1 and
d(x0,x1)

1+d(x0,x1)+D(x1,T x1)
≤ d(x0,x1)

1+d(x0,x1)
≤ d(x0,x1),

because 1+d(x0,x1)≥ 1, we get that

d(x1,x2)≤ q [αd(x0,x1)+βd(x0,x1)+βd(x1,x2)+δd(x1,x2)+ηd(x1,x2)+λd(x1,x2)+µd(x0,x1)].

This means that

d(x1,x2)≤ q · α +β +µ

1−q(β +δ +η +λ )
·d(x0,x1).

In a similar manner, for x2 ∈ T x1, there exists x3 ∈ T x2 such that

d(x2,x3)≤ q ·H (T x1,T x2).

This means that

d(x2,x3)≤ q

[
αd(x1,x2)+βD(x1,T x2)+ γD(x2,T x1)+δD(x2,T x2)+η

D(x2,T x2)[1+D(x1,T x1)]

1+d(x1,x2)
+

λ
D(x2,T x2)+D(x2,T x1)

1+D(x2,T x2) ·D(x2,T x1)
+µ

D(x1,T x1)[1+D(x2,T x1)]

1+d(x1,x2)+D(x2,T x2)

]
So, we have that

d(x2,x3)≤ q

[
αd(x1,x2)+βd(x1,x3)+ γd(x2,x2)+δd(x2,x3)+η

d(x2,x3)[1+d(x1,x2)]

1+d(x1,x2)
+

λ
d(x2,x3)+d(x2,x2)

1+D(x2,T x2) ·D(x2,T x1)
+µ

d(x1,x2)[1+d(x2,x2)]

1+d(x1,x2)D(x2,T x2)

Like before, since

d(x2,x2) = 0,
d(x2,x3)

1+D(x2,T x2) ·D(x2,T x1)
≤ d(x2,x3),

that is 1+D(x2,T x2)·D(x2,T x1)≥ 1 and
d(x1,x2)

1+d(x1,x2)+D(x2,T x2)
≤ d(x1,x2)

1+d(x1,x2)
≤ d(x1,x2),

because 1+d(x1,x2)≥ 1, we get that

d(x2,x3)≤ q [αd(x1,x2)+βd(x1,x2)+βd(x2,x3)+δd(x2,x3)+ηd(x2,x3)+λd(x2,x3)+µd(x1,x2)].

This means that

d(x2,x3)≤ q
α +β +µ

1−q(β +δ +η +λ )
·d(x1,x2)≤

(
q

α +β +µ

1−q(β +δ +η +λ )

)2

·d(x0,x1)

By induction, we infer that d(xn,xn+1)≤ rnd(x0,x1), where r :=
q(α +β +µ)

1−q(β +η +λ +δ )
.

Since q > 1 is arbitrary taken, we impose the following condition, namely

r < 1, which means that q(α +β +µ)< 1−q(β +η +λ +δ ).

Equivalently, we can take q <
1

α +2β +µ +η +λ +δ
.
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In this way, we can take q ∈
(

1,
1

α +2β +µ +η +λ +δ

)
.

From the hypotheses, we have that α +2β +µ +η +λ +δ < 1, which implies that

1 <
1

α +2β +µ +η +λ +δ
, so the definition for q is correct.

For r ≥ 0 to take place, we need the relation q <
1

β +η +λ +µ
.

Now, since q<
1

α +2β +η +λ +µ +δ
≤ 1

β +η +λ +µ
, it follows that α+β +δ ≥ 0, which

is obviously true.

Now, we show that (xn)n∈N is a Cauchy sequence, i.e.

d(xn,xn+p)≤ d(xn,xn+1)+ ...+d(xn+p−1,xn+p)≤(
rn + ...+ rn+p−1) ·d(x0,x1) =

rn ·
(
1+ ...+ rp−1) ·d(x0,x1) =

rn · 1− rp

1− r
·d(x0,x1)≤ rn · 1

1− r
d(x0,x1).

For each p≥ 1, letting n→ ∞, if follows that (xn) is a Cauchy sequence.

Because the metric d is a complete, the sequence (xn) is convergent.

Then exists p ∈ X , such that xn→ p.

We now show that p is a fixed point for the operator T . We estimate

D(p,T p) = inf
y∈T p

d(p,y)≤ d(p,xn+1)+ inf
y∈T p

d(xn+1,y)≤

d(p,xn+1)+D(xn+1,T p)≤ d(p,xn+1)+H(T xn,T p)≤

d(p,xn+1)+αd(xn, p)+βD(xn,T p)+ γD(p,T xn)+δD(p,T p)+η
D(p,T p) [1+D(xn,T xn)]

1+d(xn, p)
+

λ
D(p,T p)+D(p,T xn)

1+D(p,T p)D(p,T xn)
+µ

D(xn,T xn) [1+D(p,T xn)]

1+d(p,xn)+D(p,T p)

=⇒ D(p,T p)≤ d(p,xn+1)+αd(xn, p)+βd(xn, p)+βD(p,T p)+ γd(p,xn+1)+δD(p,T p)+

η
D(p,T p) [1+d(xn,xn+1)]

1+d(xn, p)
+λ

D(p,T p)+d(p,xn+1)

1+D(p,T p)D(p,T xn)
+µ

d(xn,xn+1)(1+d(p,xn+1))

1+d(xn, p)+D(p,T p)

Now, we have used the following relations

D(p,T xn)≤ d(p,xn+1), for each n ∈ N,

D(xn,T p) = inf
y∈T p

d(xn,y)≤ d(xn, p)+ inf
y∈T p

d(p,y) = d(xn, p)+D(p,T p),

D(p,T p)+D(p,T xn)

1+D(p,T p)D(p,T xn)
≤ D(p,T p)+d(p,xn+1)

1+D(p,T p)D(p,T xn)
≤ D(p,T p)+d(xn+1, p),
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because D(p,T p)D(p,T xn)+1≥ 1.

Letting n→ ∞, we have that

D(p,T p)≤ βD(p,T p)+ηD(p,T p)+λD(p,T p)+δD(p,T p)+µ ·0=(β +η+λ +δ )D(p,T p).

It follows that [1− (β +η +λ +δ )]D(p,T p)≤ 0. The inequality 1− (β +η +λ +δ )> 0, is

satisfied since β +η +λ +δ ≤ α +2β +µ +η +λ +δ < 1.

We obtain that D(p,T p) = 0. This means that p ∈ T p, i.e. p ∈ FT .

We have shown that d(xn,xn+p)≤ rn 1− rp

1− r
d(x0,x1).

Letting p→ ∞, we have d(xn, p)≤ rn

1− r
d(x0,x1).

Letting n = 0 in the above inequality, we have d(x0, p)≤ 1
1− r

d(x0,x1), so T is a MWP opera-

tor.

Now we present a theorem concerning the fact that T is a MWP operator.

Theorem 4.2. Let (X ,d) be a complete metric space and T : X → Pcl(X) be a multivalued

modified Hardy Rogers operator, i.e.

H (T x,Ty)≤ αd(x,y)+βD(x,Ty)+ γD(y,T x)+δD(y,Ty)+

η
D(y,Ty)[1+D(x,T x)]

1+d(x,y)
+λ

D(y,Ty)+D(y,T x)
1+D(y,Ty)D(y,T x)

+µ
D(x,T x)[1+D(y,T x)]
1+d(x,y)+D(y,Ty)

,

with all the above coefficients positive.

If α +2β +η +µ +λ +δ < 1, then the operator T is
1− (β +η +λ +δ )

1− (2β +η +λ +δ +α +µ)
−MWP.

Proof. From the proof of the previous theorem, we have that d(xn,xn+p)≤ rn 1− rp

1− r
d(x0,x1),

with r defined as r =
q(α +β +µ)

1−q(β +η +λ +δ )
.

Since the sequence (xn) was convergent to a fixed point p of T , letting p→ ∞ and then making

n = 1, we get that d(x1, p)≤ r
1− r

d(x0,x1).

Using the triangular inequality, it follows that

d(x0, p)≤ d(x0,x1)+d(x1, p)≤ d(x0,x1)+
r

1− r
d(x0,x1)≤(

1+
r

1− r

)
d(x0,x1) =

1
1− r

d(x0,x1)
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From the definition of r, letting q↘ 1, we obtain

d(x0, p)≤ 1

1− α +β +µ

1− (β +η +λ +δ )

d(x0,x1).

So d(x0, p)≤ 1− (β +η +λ +δ )

1− (2β +η +λ +δ +α +µ)
d(x0,x1).

But
1− (β +η +λ +δ )

1− (2β +η +λ +δ +α +µ)
≥ 0, which is equivaluent to β +η + λ + δ ≤ 1 and α +

2β +η +µ +λ +δ < 1, which is valid because β +η +λ +δ ≤ 2β +η +λ +δ +α +µ , so

α +µ ≥ 0.

Finally, the conclusion holds properly.

The next two theorems which are presented are related to data dependence and Ulam-Hyers

stability. For more information about this notions we remind the articles [6], [10] and [11].

Theorem 4.3. Let (X ,d) be a complete metric space and T,S : X → Pcl(X) be two multivalued

modified Hardy Rogers operators, i.e.

H (T x,Ty)≤ αT d(x,y)+βT D(x,Ty)+ γT D(y,T x)+δT D(y,Ty)+ηT
D(y,Ty)[1+D(x,T x)]

1+d(x,y)
+

λT
D(y,Ty)+D(y,T x)

1+D(y,Ty)D(y,T x)
+µT

D(x,T x)[1+D(y,T x)]
1+d(x,y)+D(y,Ty)

and

H (Sx,Sy)≤ αSd(x,y)+βSD(x,Sy)+ γSD(y,Sx)+δSD(y,Sy)+ηS
D(y,Sy)[1+D(x,Sx)]

1+d(x,y)
+

λS
D(y,Sy)+D(y,Sx)

1+D(y,Sy)D(y,Sx)
+µS

D(x,Sx)[1+D(y,Sx)]
1+d(x,y)+D(y,Sy)

,

with all the above coefficients positive.

Let’s suppose that αT + 2βT +ηT +λT + µT + δT < 1 and αS + 2βS +ηS +λS + µS + δS < 1.

Also, suppose that there exists τ > 0, such that H(Sx,T x)≤ τ , for each x ∈ X.

Then

H(FS,FT )≤ τ ·max{ 1− (βT +ηT +λT +δT )

1− (2βT +ηT +λT +δT +µT +αT )
,

1− (βS +ηS +λS +δS)

1− (2βS +ηS +λS +δS +µS +αS)
}.

Proof. Let’s consider x0 ∈ FS. This means that x0 ∈ Sx0.

Let x∗ := t∞(x,y) ∈ FT , i.e. x∗ ∈ T x∗. We denote by x := x0.

From the proofs of the previous theorems, we remind that we have shown d (x, t∞(x,y)) =

d(x,x∗)≤ 1
1− rT

d(x,y),
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where rT :=
q(αT +βT +µT )

1−q(βT +ηT +λT +δT )
, with q arbitrary taken as in the previous proofs.

So d(x, t∞(x,y))≤ 1
1− rT

d(x,y)=
1

1− rT
d(x,x1)≤

qτ

1− rT
, with x := x0 and y := x1 ∈ T x0. This

inequality chain is obtained because for x = x0, there exists y = x1 ∈ T x0, such that d(x0,x1)≤

qH(Sx0,T x0)≤ qτ.

Analogous, we have that for y0 ∈ FT , there exists y1 ∈ Sy0, such that

d (y0, t∞(y0,y1))≤
qτ

1− rS
,

where rS :=
αS +βS +µS

1− (βS +ηS +λS +δS)
.

All the above inequalities implies that H(FS,FT )≤ qτ ·max{ 1
1− rT

,
1

1− rS
}.

Letting q↘ 1, we get that H(FS,FT )≤ τ ·max{ 1
1− rT

,
1

1− rS
}.

So, the conclusion holds.

Now, the next fixed point theorem involves Ulam-Hyers stability of the fixed point inclusion.

Theorem 4.4. Let T : X → Pcp(X) be a multivalued modified Hardy Rogers contraction with

positive coefficients (α,β ,γ,δ ,η ,λ ,µ), with α +2β +η +λ +µ +δ < 1.

Let ε > 0 and x ∈ X, such that Dd(x,T x)≤ ε .

Then, there exists x∗ ∈ FT such that d(x,x∗)≤ ε · 1− (β +η +λ +δ )

1− (2β +η +α +λ +δ +µ)
.

Proof. Let ε > 0 and x ∈ X , such that Dd(x,T x)≤ ε .

Since T x is compact for the above x, it implies that there exists y ∈ T x, such that D(x,T x) =

d(x,y)≤ ε .

From the previous proofs, we have that d(x, t∞(x,y)) ≤ 1
1− r

d(x,y), with y ∈ T x considered

above.

Then d(x,x∗)≤ ε

1− r
, that is d(x,x∗)≤ ε · 1− (β +η +λ +δ )

1− (2β +η +α +λ +δ +µ)
.

This means that the conclusion is valid under the theorem’s hypotheses.

In the next two theorems and in the last corollary we present local versions involving two

metrics and homotopy results with respect to modified multivalued Hardy-Rogers operators.

For homotopy-type results we let the reader follow [1] and [2] and [5].

Theorem 4.5. Let (X ,d) be a complete metric space. Let x0 ∈ X and r > 0.

Let ρ be another metric on X and let T : Bd
ρ(x0,r)→ P(X) be a multivalued operator.
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Let’s suppose the following assumptions are satisfied

(1) there exists c > 0 such that d(x,y)≤ cρ(x,y), for each x,y ∈ X

(2) If d 6= ρ , then T : Bd
ρ(x0,r)→ P(Xd) is a closed operator,

If d = ρ , then T : Bd
d(x0,r)→ Pcl(Xd),

(3) for each x,y∈ Bd
ρ(x0,r), we have that T is a multivalued modified Hardy Rogers contraction

with respect to the metric ρ , i.e.

Hρ(T x,Ty)≤ αρ(x,y)+βDρ(x,Ty)+ γDρ(y,T x)+δDρ(y,Ty)+

η
Dρ(y,Ty)

[
1+Dρ(x,T x)

]
1+ρ(x,y)

+λ
Dρ(y,Ty)+Dρ(y,T x)

1+Dρ(y,Ty)Dρ(y,T x)
+µ

Dρ(x,T x)
[
1+Dρ(y,T x)

]
1+ρ(x,y)+Dρ(y,Ty)

(4) Dρ(x0,T x0)< (1−θ)r, with θ :=
α +β +µ

1− (β +δ +η +λ )
∈ [0,1), where all the Hardy-Rogers

type coefficients are positive.

Then, we have that there exists x∗ ∈ Bd
ρ(x0,r), such that x∗ ∈ T x∗.

Proof. From the hypotheses we have that Dρ(x0,T x0)< (1−θ)r.

Then, for x0 there exists x1 ∈ T x0 such that

ρ(x0,x1)< (1−θ)r.

This means that x1 ∈ Bd
ρ(x0,r). We have that

Hρ(T x0,T x1)≤ αρ(x0,x1)+βDρ(x0,T x1)+ γDρ(x1,T x0)+δDρ(x1,T x1)+

η
Dρ(x1,T x1)

[
1+Dρ(x0,T x0)

]
1+ρ(x0,x1)

+λ
Dρ(x1,T x1)+Dρ(x1,T x0)

1+Dρ(x1,T x1)Dρ(x1,T x0)
+µ

Dρ(x0,T x0)
[
1+Dρ(x1,T x0)

]
1+ρ(x0,x1)+Dρ(x1,T x1)

≤ αρ(x0,x1)+βρ(x0,x1)+βDρ(x1,T x1)+δDρ(x1,T x1)+ηDρ(x1,T x1) ·
1+ρ(x0,x1)

1+ρ(x0,x1)
+

λDρ(x1,T x1) ·
1

1+Dρ(x1,T x1)Dρ(x1,T x0)
+µρ(x0,x1)≤

(α +β +µ)ρ(x0,x1)+(λ +δ +β +η)Dρ(x1,T x1).

Then Hρ(T x0,T x1)≤ (α +β +µ)ρ(x0,x1)+(λ +δ +β +η)Dρ(x1,T x1).

Since Dρ(x1,T x1)≤Hρ(T x0,T x1), then Dρ(x1,T x1)≤
α +β +µ

1− (β +δ +λ +η)
ρ(x0,x1)= θρ(x0,x1)<

θ(1−θ)r. So there exists x2 ∈ T x1 such that ρ(x1,x2)< θ(1−θ)r.

So ρ(x0,x2)≤ ρ(x1,x2)+ρ(x0,x1)< θ(1−θ)r+(1−θ)r = (1−θ)(1+θ)r = (1−θ 2)r≤ r.

This means that x2 ∈ Bd
ρ(x0,r).
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In a similar manner, for x1 and x2 in Bd
ρ(x0,r) we have that

Hρ(T x1,T x2)≤ αρ(x1,x2)+βDρ(x1,T x2)+ γDρ(x2,T x1)+δDρ(x2,T x2)+

η
Dρ(x2,T x2)

[
1+Dρ(x1,T x1)

]
1+ρ(x1,x2)

+λ
Dρ(x2,T x2)+Dρ(x2,T x1)

1+Dρ(x2,T x2)Dρ(x2,T x1)
+µ

Dρ(x1,T x1)
[
1+Dρ(x2,T x1)

]
1+ρ(x1,x2)+Dρ(x2,T x2)

≤ αρ(x1,x2)+βρ(x1,x2)+βDρ(x2,T x2)+δDρ(x2,T x2)+ηDρ(x2,T x2) ·
1+ρ(x1,x2)

1+ρ(x1,x2)
+

λDρ(x2,T x2) ·
1

1+Dρ(x2,T x2)Dρ(x2,T x1)
+µρ(x1,x2)≤

(α +β +µ)ρ(x1,x2)+(λ +δ +β +η)Dρ(x2,T x2).

Then Hρ(T x1,T x2)≤ (α +β +µ)ρ(x1,x2)+(λ +δ +β +η)Dρ(x2,T x2).

Since Dρ(x2,T x2)≤Hρ(T x1,T x2), then Dρ(x2,T x2)≤
α +β +µ

1− (β +δ +λ +η)
ρ(x1,x2)= θρ(x1,x2)<

θ 2(1−θ)r. So there exists x3 ∈ T x2 such that ρ(x2,x3)< θ 2(1−θ)r.

So, applying triangular inequality, we obtain

ρ(x0,x3)≤ ρ(x0,x2)+ρ(x2,x3)< (1−θ 2)r+θ 2(1−θ)r = (1−θ 3)r ≤ r.

This means that x3 ∈ Bd
ρ(x0,r).

So, we have created a sequence (xn)⊂ Bd
ρ(x0,r), with the following properties :

(i) xn+1 ∈ T xn, for each n ∈ N,

(ii) ρ(xn−1,xn)≤ θ n−1(1−θ)r, for each n ∈ N,

(iii) ρ(x0,xn)≤ (1−θ n)r.

It is easy to see that (xn) is a Cauchy sequence in (X ,ρ).

Using the fact that d(x,y)≤ cρ(x,y), for each x,y ∈ X , it implies that (xn) is a Cauchy sequence

in (X ,d).

Because (X ,d) is a complete metric space, there exists x∗ ∈ Bd
ρ(x0,r) such that xn

d→ x∗.

Furthermore, we have two cases to analyze.

I If d 6= ρ , since T : Bd
ρ(x0,r)→ P(Xd) is a closed operator, then x∗ ∈ T x∗.

II If d = ρ , we have that Dd(x∗,T x∗)≤ d(x∗,xn+1)+Dd(xn+1,T x∗)≤ d(x∗,xn+1)+Hd(T xn,T x∗)=
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d(x∗,xn+1)+Hρ(T xn,T x∗). It follows that

Dd(x∗,T x∗)≤ d(x∗,xn+1)+αd(xn,x∗)+βDd(xn,T x∗)+ γDd(x∗,T xn)+δDd(x∗,T x∗)+

η
Dd(x∗,T x∗) [1+Dd(xn,T xn)]

1+d(xn,x∗)
+λ

Dd(x∗,T x∗)+Dd(x∗,T xn)

1+Dd(x∗,T x∗) ·Dd(x∗,T xn)
+µ

Dd(xn,T xn) [1+Dd(x∗,T xn)]

1+d(xn,x∗)+Dd(x∗,T x∗)
≤

d(x∗,xn+1)+αd(xn,x∗)+βDd(xn,T x∗)+ γDd(x∗,T xn)+δDd(x∗,T x∗)+

ηDd(x∗,T x∗) [1+d(xn,xn+1)]+λDd(x∗,T x∗)+λd(x∗,xn+1)+µd(xn,xn+1) [1+d(x∗,xn)] .

Letting n→ ∞, we get the following inequality

Dd(x∗,T x∗)≤ [β +δ +λ +η ]Dd(x∗,T x∗), i.e. Dd(x∗,T x∗)(β +δ +λ +η)≤ 0.

Now, since θ ∈ [0,1), as in the proofs of the previous theorems, it follows that β +δ +η +λ ≤

α +2β +µ +η +λ +δ < 1. Moreover, because d = ρ and T has closed values, we have that

x∗ ∈ T x∗.

Now, the last main result of this section involves a theorem regarding the homotopy of a

modified multivalued Hardy-Rogers operator.

Theorem 4.6. Let (X ,d) be a complete metric space and d,ρ two metrics on X such that there

exists c > 0, with d(x,y)≤ cρ(x,y), for each x,y ∈ X.

Let U ⊂ (X ,ρ) an open subset and V ⊂ (X ,d) a closed subset of X, such that U ⊂V .

Let’s consider the multivalued operator G : V × [0,1]→ P(X), which satisfies the following

conditions :

(a) x 6∈ G(x, t), for each x ∈V \U and t ∈ [0,1]

(b) there exists α,β ,γ,δ ,λ ,η ,µ positive coefficients with θ ∈ [0,1) as in the previous theorem,

such that for each t ∈ [0,1] and x,y ∈V , we have that

Hρ (G(x, t),G(y, t))≤Mρ,G(·,t)(x,y), where

Mρ,G(·,t)(x,y) := αρ(x,y)+βDρ(x,G(y, t))+ γDρ(y,G(x, t))+δDρ(y,G(y, t))+

η
Dρ(y,G(y, t))

[
1+Dρ(x,G(x, t))

]
1+ρ(x,y)

+λ
Dρ(y,G(y, t))+Dρ(y,G(x, t))
1+Dρ(y,G(y, t))Dρ(y,G(x, t))

+

µ
Dρ(x,G(x, t))

[
1+Dρ(y,G(x, t))

]
1+ρ(x,y)+Dρ(y,G(y, t))
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(c) there exists an increasing, continuous function φ : [0,1]→ R, such that

Hρ (G(x, t),G(x,s))≤ |φ(t)−φ(s)|, for each s, t ∈ [0,1] and x ∈V

(d) G : V × [0,1]→ P(X ,d) is a closed operator.

Then, we have the following equivalence relation

G(·,0) has a fixed point if and only if G(·,1) has a fixed point.

Proof. Let’s suppose that G(·,0) has a fixed point z .

From the assumption (a), we get that z ∈U .

Let’s denote Q := {(t,x) ∈ [0,1]×U/x ∈ G(x, t)}. Then Q is nonempty, because (0,z) ∈ Q.

On the set Q, we define a partial order relation, i.e.

(t,x) ≤ (s,y) if and only if t ≤ s and ρ(x,y) ≤ 2
1−θ

|φ(t)− φ(s)|, for each t,s ∈ [0,1] and

x,y ∈U .

Let M ⊂ Q, with M being a totally ordered subset of Q.

Moreover, denote by t∗ := sup
(t,x)∈M

t.

Now we define the sequence (tn,xn) ∈M, such that (tn,xn)≤ (tn+1,xn+1), with tn→ t∗.

As in [5], we have that

ρ(xn,xm)≤
2

1−θ
|φ(tm)−φ(tn)|. This implies that ρ(xn,xm)→ 0 and therefore (xn) is a Cauchy

sequence with respect to the metric ρ .

Using the fact that (X ,d) is a complete metric space and that there exists c > 0, such that for

each x,y ∈ X , d(x,y)≤ cρ(x,y), we obtain that xn→ x∗, with x∗ ∈ (X ,d).

Since xn ∈ G(xn, tn) and G is a d−closed operator, we have that x∗ ∈ G(x∗, t∗).

From assumption (a), x∗ ∈U and therefore (t∗,x∗) ∈ Q.

Since M is a totally ordered subset of Q, it follows that (t,x) ≤ (t∗,x∗), for each (t,x) ∈M, so

(t∗,x∗) is an upper bound for M.

Using the well known Zorn’s Lemma, Q admits a maximal element, i.e. (t0,x0) ∈ Q.

Now we show that t0 = 1.

Let’s suppose the contrary, i.e. that t0 < 1. We choose r > 0 and t ∈ (t0,1) such that Bρ(x0,r)⊂

U , with r :=
2

1−θ
|φ(t)−φ(t0)|.

Then Dρ (x0,G(x0, t))≤ Dρ (x0,G(x0, t0))+Hρ (G(x0, t0),G(x0, t))≤

|φ(t)−φ(t0)|+Dρ(x0,G(x0, t0)).
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Since (t0,x0) ∈ Q, it implies that x0 ∈ G(x0, t0), therefore Dρ (x0,G(x0, t0)) = 0.

So Dρ (x0,G(x0, t))≤ |φ(t)−φ(t0)| ≤
(1−θ)r

2
< (1−θ)r.

But we know that Bd
ρ(x0,r) ⊂ V , so G : Bd

ρ(x0,r)→ Pcl(X) satisfies the assumptions of the

previous theorem, therefore for each t ∈ [0,1], there exists x ∈ Bd
ρ(x0,r) satisfying the property

that G has a fixed point, that is x ∈ G(x, t), which implies that (t,x) ∈ Q.

But ρ(x0,x)≤
2

1−θ
|φ(t)−φ(t0)|= r. This means that (t0,x0)< (t,x), which is a contraction.

So t0 = 1.

For the other implication, we show that G(·,1) has a fixed point by swapping t with 1− t in the

first part of the proof. So, we get the desired result.

When the metric functionals d and ρ are identical, we have the following corollary.

Corollary 4.7. Let U ⊂V ⊂ X , with (X ,d) a complete metric space, U open and V closed.

Let G : V × [0,1]→ P(X) a closed operator , satisfying the following assumptions

(a) x 6∈ G(x, t), for each x ∈V \U and t ∈ [0,1]

(b) G(·, t) be a Hardy Rogers modified multivalued contraction with respect to d, for each

t ∈ [0,1]

(c) Hd (G(x, t),G(x,s))≤ |φ(t)−φ(s)|, for each t,s ∈ [0,1] and for each x ∈V , with φ : [0,1]→

R increasing and continuous.

Then

G(·,0) has a fixed point if and only if G(·,1) has a fixed point.
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