Available online at http://jfpt.scik.org
J. Fixed Point Theory, 2019, 2019:2
ISSN: 2052-5338

EXISTENCE OF ENDPOINTS OF MULTI-VALUED ALMOST ¢—CYCLIC
WEAKLY CONTRACTIVE MAPS

G. V.R. BABU™* AND G. SATYANARAYANA!2

1Department of Mathematics, Andhra University, Visakhapatnam-530 003, India

?Department of Mathematics, Dr. Lankapalli Bullayya College, Visakhapatnam-530 013, India

Copyright © 2019 the authors. This is an open access article distributed under the Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. We introduce multi-valued almost ¢—cyclic weakly contractive maps and prove the existence and
uniqueness of endpoints in complete metric spaces when such map has the approximate cyclic endpoint property.
Our results generalize the earlier results that are existing in the literature. Examples are provided in support of our

results and for the justification of the hypotheses.
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1. INTRODUCTION

In 1969, Nadler[8] extended a well known Banach contraction principle to multi-valued map-
pings. Since then, fixed point theory draws many authors’ attention towards the study of fixed
points for multi-valued mappings in various metric spaces.

In 2003, Kirk, Srinivasan and Veeramani[5] introduced the concept of cyclic mappings and
extended Banach contraction principle in the case of cyclic contraction mappings. Now a days,
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the study of the existence and uniqueness of endpoints for a multi-valued mapping in metric
spaces has gained a lot of importance. For more literature, we refer [2, 3, 4, 6, 7, 10, 11, 12]
and the related references therein.

Let (X,d) be a metric space, P.; »4(X) be the set of all closed and bounded subsets of X and
we consider the Hausdorff metric .7 on P »4(X) induced by d, that is,
A (A, B) = max{supdist(u,B),supdist(A,v)} where dist(x,A) = inf{d(x,a) :a € A}. Also, we
denote §(x,A) = sulfz{d(x,a) : avgil}.

Let T : X — P, 5q(X) be a multi-valued map. A point x € X is called a fixed point (endpoint)
of T if x € Tx (Tx = {x}) and we denote the set of all fixed points of 7 by Fix(T') and the set
of all endpoints of T by End(T).

Definition 1.1. [7] Let X be a metric space, T : X — Py pa(X) be a multi-valued mapping,
f X — X be a self-map and {X;}!" | be a nonempty class of nonempty subsets of X.
Let X;, = X; if n =i (mod m). Then

(i) X = [nj Xi is called a cyclic representation on X with respect to T if Tx; C X1, x; € X; for
i€ {11:,12, .m} with X1 = X].

(ii) X = (nj X; is called a cyclic representation on X with respect to f if f(x;) € Xi+1, xi € X;
Sfori 1621{1,2,...m} with X, 1 = X].

(iii) T has the approximate cyclic endpoint property if there exists a sequence {x,}5_, such
that x, € X, for every n and lgn H({xn},Tx,) = 0.
n—so0
(iv) We say that the fixed point problem is well posed for T if T has a unique endpoint and for

any sequence {x,} such that x, € X, and li_r>n A ({xn},Tx,) = 0 implies that 1i_r>n Xp =X
n—o0 n—oo

for some x € X.

m m
Remark 1.1. If X = |J X is a cyclic representation on X with respectto T (or f) then X = () X;
i=1 i=1

contains all fixed points of T (or f).

Throught this paper, we denote [0,) by RT. We write
®={¢p:R" - R"/ (i) o(t) =0if and only if r = 0, (ii) @(¢) <t forz >0 and
(iii) @(t,) — 0 implies that ¢, — 0}.
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Theorem 1.1. ([7], Theorem 3.1) Let (X, d) be a complete metric space, {X;};-": | be a nonempty
m

class of nonempty closed subsets of X, T : X — P,j pq(X) be a multi-valued map and X = |J X;
i=1

be a cyclic representation on X with respect to T. Let T be a cyclic weak ¢— contraction map

for some @ € D, i.e., T satisfies

(1) H(Tx,Ty) <d(x,y) — @(d(x,y))

forxeXiandy e X1, i=1,2,....om with X, 11 = X1. Then T has a unique endpoint if and
only if T has the approximate cyclic endpoint property, that is, the fixed point problem is well
posed for T. Moreover, Fix(T) = End(T).

We call the map T of Theorem 1.1 that satisfies the inequality (1) as a multi-valued ¢—cyclic
weakly contractive map. This name is suitable for such maps. For more details, we refer Alber

and Guerre-Delabriere[1] and Rhoades[9].

Theorem 1.2. ([7], Theorem 3.4) Let (X ,d) be a complete metric space, {X;}"" | be a nonempty
m

class of nonempty closed subsets of X, f: X — X be a selfmap and X = |J X; be a cyclic
i=1

representation on X with respect to f. Let f be a cyclic @—contraction for some ¢ € P, i.e.,

2) d(fx,fy) <d(x,y) — 9(d(x,y))
forxe X, yeXir1, i=1,2,....mwith X, 11 = X1. Then f has a unique fixed point.

Here we observe that the ¢ that is applied to prove Theorem 1.1 and Theorem 1.2, the con-
dition (if) of ¢ € @ is not used any where in the proofs. Hence, we replace ® by ®; where
@ ={¢p:R" - R"/(i) ¢(t) =0 if and only if t = 0,and

(ii) @(t,) — O implies that#, — 0}.
In fact ®; is larger than @, for example, the mapping ¢ : R™ — R™ defined by ¢(¢) =t + sint,
t >0, is in @, but not in P.

In Section 2, we define multi-valued ‘almost ¢ —cyclic weakly contractive maps for ¢ € @y’

and show that the class of all such maps is larger than the ‘class of multi-valued ¢—cyclic

weakly contractive maps for ¢ € ®;’. In Section 3, we prove the existence of endpoints of
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multi-valued almost @ —cyclic weakly contractive map (Theorem 3.1). Also, we show the im-
portance of considering L > 0 in the almost ¢ —cyclic weakly contractive map in Theorem 3.1

(Example3.1). Our result generalize Theorem 1.1.

2. PRELIMINARIES

In the following, we define multi-valued almost ¢ —cyclic weakly contractive maps for

¢ c .

Definition 2.1. Let X be a metric space, T : X — Py pqa(X) be a multi-valued mapping, {X;}7"
m

be a nonempty class of nonempty subsets of X and X = |J X; be a cyclic representation on X
i=1

with respect to T. If there exist L > 0 and ¢ € ®; such that

3) H(Tx,Ty) < M(x,y) — ¢(d(x,y)) + LS (x, Tx)

where M(x,y) :max{d(x,y),5(x,Tx),S(y,Ty),w}, x€X;, yEXiy1 fori=1,2,....m

with Xy, +1 = X| then we say that T is a multi-valued almost ¢ —cyclic weakly contractive map.

Here we note that a map 7 that satisfies (1) is continuous, whereas a map 7 that satisfies (3)
need not be continuous. Also, we note that a map 7 that satisfies (1) implies that it satisfies (3)

but its converse is not true due to the following example.

Example 2.1. We consider the usual metric on X = [0, 1] so that X is a complete metric space

and X, = [0,3], X> = [1,3], X3 = [3, 1] are closed subsets of X.

We define T : X — Pey pa(X) by

[%—Hc,%—x] if 0§x§1—16
gl i g <xs<y
Tx=q =33+ F §<x<y
=g +il I p<xsy
st i g<ast

3
Then X = |J X; is a cyclic representation on X with respect to T.
i=1
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We define @ : RT — R by ¢(t) = % so that ¢ € ®y.

Then T is a multi-valued almost @ —cyclic weakly contractive map with L =1, i.e.,

H(Tx,Ty) < M(x,y) — @(d(x,y)) + 8(x,Tx) where x € X; and y € X;11 for i = 1,2,3 with

X4 = X1. But, T does not satisfy the inequality (1), for example,

27 111 363 365
we choose x = {{5 and 'y = 104 so that T (x) = [, 1], T(y) = (535, §33) and

331 391
%(Txv TY> = 3824 £~ 7280 — d(x )’) q)(d(x,y)).
3
Here we note that T is not continuous at % eNXi= [%, %], for example, we consider
i=1
_ n+3 1 _ Pn Tn+5 n+9 1 _ 131
the sequence py = 3.5 so that pp — 3, Tpn = [ =g 3 + 5] = [tt1s: Ten 1160 T2 = (502

and S (T py, T 3) = max{0, 16",11116} = 16’:1;116 - 0.

The following lemma is useful in proving our main results.

Lemma 2.1. Let (X,d) be a metric space and {x,};;_, be a sequence in X such that

lgn d(xp,xp+1) = 0. If {x,}5r_, is not a Cauchy sequence in X then there exist € >0 and a
n—oo

subsequence {x, )}y of {xu}y_, such that hm d(Xn(k)s Xn(ks1)) = € Moreover, there exists a

positive integer Ny such that n(k+ 1) — n(k) 2 2f0r all k with n(k) > No.

Proof. Since {x,};-_, is not Cauchy, there exist £ > 0 and a strictly increasing sequence {n(k)};_,
of positive integers such that n(k+ 1) is the smallest positive integer greater than n(k) such that
d(%n(t) (i 1)) > € fork=1,2,3,....
We consider
€ < d (X1 1)s%n(k)) < dXn(rr1)sXn(kr1)—1) +d Xt 1)—1:Xn(k))

< d(Xu(kg1)s Xn(p1)—1) HETork=1,2,....
Since nlgn d(xp,xp+1) = 0, we have klgn d(Xp(k)» Xn(k+1)) = €. Also, there is a positive integer
Np such that d(x,,x,+1) < € forn > Ny. If n(k+ 1) = n(k) 4 1 for some k with n(k) > Ny then
d(Xn(k)sXn(k+1)) = d(Xn(k)»Xn(k)+1) < €, a contradiction.

Therefore n(k+ 1) —n(k) > 2 for all k with n(k) > Np. O
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3. ENDPOINTS OF MULTI-VALUED ALMOST ¢@¢—CYCLIC WEAKLY

CONTRACTIVE MAPS

Proposition 3.1. Let (X ,d) be a complete metric space, {X;}!" | be a nonempty class of nonempty
m

closed subsets of X and T : X — Py pq(X) be a map. Assume that X = |J X; is a cyclic repre-
i=1

sentation on X with respect to T and T is a multi-valued almost @—cyclic weakly contractive

map. Let X, = X; whenever n =i (mod m) and {xn};:1 be an arbitrary sequence in X such that

m
Xn € Xy, for every n and lim € ({x,},Tx,) = 0. Then {x,};;_, converges to a point of ) X;.

1

Proof. By taking x = x,, and y = x,, in the inequality (3), we have

4) q)(d(xn»anrl)) < M(xmanrl) +L6(xn; Txn) - %(Txm Tanrl)y

where M (X, %1 1) = max{d(Xu, Xn 1), 8 (%n, Tx), 8 (X1, T 1), Sl ore1 ) FO0n 1 T)

= max{ S ({xn},{xns-1}), 7 ({xn}, Txn), 2 ({xp11}, Ton11),
%({xn}-,Tanrl);%&({anrl}»Txn)}

< H({xn}, Txy) + 7 (Txy, Txps1) + 7 ({xns1}, Txnt1).
From (4), we have
@(d(xn,Xn41)) < A ({xn}, Txn) + (T, Txng1) + 7 ({xn11}, Txng 1)
+ LA ({xn},Txn) — H(Txp, Txpi1).

On letting n — oo, it follows that lim ¢(d(x,,x,+1)) = 0 so that
n—oo

(5) lim d(x,,x,+1) = 0.

n—yoo

Now we prove that {x,}>_, is Cauchy. Otherwise, by Lemma 2.1, there exist € >0 and a

subsequence {x,(x) };—; of {x,},_; such that

(6) lim d(xn(k)axn(k+l)) =¢&.

k—soo
Also, there exists Ny € Z™ such that n(k+ 1) —n(k) > 2 for all k with n(k) > Np.
Therefore for each k with n(k) > Ny, there is an integer /(k) € {1,2,...,m} such that
n(k+1) —1(k) = (n(k) + 1) (mod m) so that X,,x1.1)—1(k) € Xn(k)+1-
By the triangle inequality, it is easy to see that

| (Xn(kys Xk 1)) — 4 ) s Xk 1) —100) | < At 1)s Xk 1)-1) Hd Kn(er 1)— 1 Xn (ks 1)-2) - F
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d(Xn(kt 1) 1(k)+ 1 Xn(k 4 1)—1(k) ) Tor all k.
On letting k — oo from (5) and (6), it follows that

@) lim d(xn(k),xn(kﬂ),l(k)) = E.

k—roo

By taking x = x,,x) and y = x,,(x4.1)—(x) In the inequality (3), we have
O(d (Xn(r) s Xn(k+ 1) —1(k))) < M (k) s Xn(ier 1) 1(6)) FLO iy s TxXn(ky) — 7€ (TXn()s T Xk 1) 1(k) )
where M (X;,(k), Xn(k+1)—1(k)) = MaX{d (X (1) X (k1) —1(k) ) O (Knkys TXn(ie) )

5()6,1 k 7Txn k+1)—I(k )+6(xn k+1)—1(k ,Tx,, k )
S(Xn(k—l—l)—l(k);Txn(k+1)_l(k))’ (k) (k+1)—1(k) 3 (k+1)—1(k) (k) }

It is easy to see that
M (%) Xn (1) —1k)) < 2€ (X b TXnr)) + 7€ (TXn () T X (k1) —1(k))
+ (Xt 1) 10 b T X (e 1)—1(k))-
Therefore
O (d(Xnr)s Xn(k+ 1) —1(k)) < (L+ DI b TxXnry) + 7 {Xnter1)—100 b Tk 1)—1(k)) -
On letting k — oo, we have lim @(d (x,(k), X (k-+1)—1(k))) = O-
k—yo0
Since ¢ € @, we have lim d(xn(k),xn(kﬂ),l(k)) =0,
k—yo0
a contradiction due to (7).
Therefore {x,}_, is a Cauchy sequence in X.
Since (X, d) is a complete metric space, there exists x € X such that lgll Xy = X.
n—oo

For each 1 <i <m, we consider the subsequence {x,, } of {x,} where n; =i ( mod m).

m
Since x,, € X; and X; is closed in X, it follows that x € X; for every i and so x € [ X;. [
i=1

Theorem 3.1. In addition to the hypotheses of Proposition 3.1, if T is continuous at every point
m

of (N X; then T has a unique endpoint if and only if T has the approximate cyclic endpoint
i=1

property.

Proof. We assume that 7" has an endpoint x € X so that x € X,, for every n by Remark 1.1.
If we take x,, = x for n = 1,2,3... then r}l_r&%”({xn}, Tx,) =0, that is, T has the approximate
cyclic endpoint property.

Conversely, we assume that 7" has the approximate cyclic endpoint property, i.e., there exists

a sequence {x,}>_, in X such that x, € X,, and 1i_r>n H ({xn},Tx,) =0.
n—oo
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m
Therefore by Proposition 3.1, there exists x € (] X; such that lim x,, = x.
i=1 e

By the triangle inequality, we have
H({x},Tx) < ({x},{xn}) + I ({xn}, Txy) + 5 (Tx,, Tx) for every n and by using the con-
tinuty of 7' at x it follows that .7 ({x},Tx) = 0 so that x € End(T).
Now we prove that 7' has a unique endpoint.
Let x,y € End(T) so that x,y € ﬁ X; and
d(x.y) = AT Ty) < M(x.y) — p(d(x.y) + LS T)

= max{d(x,y),0,0,d(x,y)} — @(d(x,y)).
Therefore, ¢(d(x,y) = 0 so that x = y. O

Remark 3.1. Theorem 1.1 follows as a corollary to Theorem 3.1, since the inequality (1) implies

the inequality (3).
When L = 0 in the inequality (3), we have the following.

Corollary 3.1. Let {X;}"" | be a nonempty class of closed subsets of a complete metric space
m

(X,d), T : X — Py pa(X) be a multi-valued map and X = |J X; be a cyclic representation X
i=1

with respect to T. Suppose that there exists ¢ € Py such that

8) H(Tx,Ty) < M(x,y) — ¢(d(x,y))

where M (x,y) = max{d(x,y),d(x,Tx),5(y, Ty), W} xe€X,yEXiy1fori=1,2,...m
m

with X, 11 = X. Let X, = X; whenever n = i (mod m) and T is continuous on () X;.
i=1

Then T has a unique endpoint if and only if T has the approximate cyclic endpoint property.

Corollary 3.2. Let (X,d) be a complete metric space, {X;}!" | be a nonempty class of closed
m
subsets of X, T : X — Pey pa(X) be a multi-valued map and X = J X; be a cyclic representation

i=1

on X with respect to T. Suppose that T satisfies

(9) %(TX,T_)/) SMl(x7y)_(P<d(x7y))+L6(x’Tx)

where L >0, ¢ € @1, M| (x,y) = max{d(x,y),dist(x,Tx),dist(y,Ty), disz(x’Ty);diSl(y’Tx)} where

x€Xi,y€ Xy fori=1,2,....mwith X,,1-1 = X1. Let X, = X; whenever n = i (mod m) and
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m

T is continuous at every point of (| X;. Then T has a unique endpoint if and only if T has the
i=1

approximate cyclic endpoint property. Also, Fix(T) = End(T).

Proof. The conclusion follows from Theorem 3.1, since the inequality (9) implies

the inequality (3). We choose x € End(T). Now for any y € Fix(T),

d(x,y) < 7(Tx,Ty) < max{d(x,y),0,0,d(x,y)} — @(d(x,y)) so that ¢(d(x,y)) < 0 and hence
y=x€ End(T). Hence Fix(T) = End(T). O

The following is an example in support of Theorem 3.1.

Example 3.1. Let X = [0, 1] with usual metric on the real line. We define
T : X — Pupa(X) by Tx = [a,b] where a = min{3},1 —x} and b = max{},1—x}.
Let X; = [0, 3] and X, = [}, 1] so that X; UX; is a cyclic representation on X with respect to T.

t ift €0,1),
We define ¢ : R™ — R™ by (1) = f [1 2) so that ¢ € ®;.
i ft€lz)
Now we prove that T satisfies the inequality (3) with L = %

Letx € Xy andy € X, so that Tx = [3,1 —x] and Ty = [1 -y, 1].

We assume that x+y < 1.

For any u € Tx, dist(u,Ty) = u— § so that sup dist(u,Ty) = 152 and
ucTx
foranyv € Ty, dist(Tx,v) = % —v so that sup dist(Tx,v) = %
veTy
_ 1-2x 2y—1y _ 1-2
Therefore, 7 (Tx,Ty) = max{-5=, 55—} = 5=,
3 —xtmax{y—1,1—x—y
M(x,y):max{y—x,l—Zx,Zy—l,2 {2 2 }}:1—2)(

It is easy to see that

(T, Ty) = 55 < 1-2x— (y—x) + 155 < M(x,y) — p(d(x,)) + 25,

Similarly, it is easy to verify the inequality (3) for the case x+y > 1.

Hence T is a multi-valued almost ¢ —cyclic weakly contractive map.

3z ifn=1(mod 2)

o4 ifn=0 (mod 2).

Then x,, € X, forn =1,2,3... and ’}ijgoe%”({xn},Txn) = ﬁ =0.

We choose x,, =

Hence T has the approximate cyclic endpoint property.
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We observe that for any x € X, 7 (Tx, T%) =|x— %| so that T is continuous on X; N X, = {%}
Hence all the hypotheses of Theorem 3.1 hold and End(T) = {%}

Here we observe that %”(T%, T3 =7 L& ] 5= 4, 4 (p(d(%, %)) Hence T fails to satisfy

the inequality (1) so that Theorem 1.1 is not applicable.

In the following, we give an example to show that a multi-valued almost ¢ — cyclic weakly
contractive map has no endpoints but may have fixed points if we relax the approximate cyclic

endpoint property in Theorem 3.1.

Example 3.2. We consider usual metric on X = [0,1] and X; = [0,1], X, = [},3], X3 = [%, 1].

We define T : X — Pe pa(X) by

Tx=4 [3—33+3) if §<x<g
3-%53+3 i j<x<3
[3:3) if 3<x<I

3
Then X = |J X; is a cyclic representation on X with respect to T.
i=1

We define ¢ : RT™ — RT by (1) = %’ so that @ € P;.
Then T satisfies (3) with L = 1.

Since 7 (Tx,Ty) = h;y'for any x,y € [%, %] and ' (Tx,T3) = 0 for any x € [3, 1], it follows

& 1
) E]

that T is continuous on () X; = |
If T has the approximate cyclic endpoint property, that is, there exists a sequence {x,}

[e ]98]

i=1

such that lgn I ({xn}, Tx,) =0 where x,, € X,, forn=1,2,3, ... with X,, = X; whenever
n—soco
n =i (mod m) then lim Jf({xgn} Tx3,) =0.

If{x3n} C [g _6] then T_X3n [% _ X3n 3 _|_x3”] and llm %({)@n} T_x3n) — llm 3— 6XBn ?é 0
If {x3,} C [k, 3] then lim 72({x3n},Tx3,) = lim 5x3n 2 20,
If {x3u} C [5,1] then Txzy = [3, 3] and lim 7 ({x3,}, Tx3,) = lim x3, — 3 # 0,

a contradiction.
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Thus T fails to satisfy the approximate cyclic endpoint property, and observe that T has no
endpoints but Fix(T) = [%, 1
Remark 3.2. Remark 3.1, Example 3.1 and Example 3.2 show that Theorem 3.1 is a general-

ization of Theorem 1.1.

Theorem 3.2. Let (X,d) be a complete metric space, {X;}" | be a nonempty class of nonempty
m

closed subsets of X, f : X — X be a selfmap and X = |J X; be a cyclic representation on X with
i=1

respect to f. Suppose that there exists ¢ € @ such that

(10) d(fx,fy) <M(x,y) — ¢(d(x,y))

where M(x,y) = max{d(x,y),d(x, fx),d(y, fy), LIS v e Xy e Xioi fori=1,2,....m
m
with X, 11 = X1. Further, we assume that f is continuous at every point of () X;. Then

i=1
f has a unique fixed point.

Proof. Let X,, = X; whenever n = i (mod m). Let x| € X| be arbitrary and x,,;1 = f(x,) so that
xp€X,forn=1,2,....

We define T : X — Py pq(X) by Tx = {fx} forx € X.
It is easy to see that T satisfies the inequality (8) and 7 is continuous on ﬁ X;.

i=1
Now we show that T has the approximate cyclic endpoint property.

We assume that fx, # x, for any n.
We consider
d(xmxn—H) = d(fxn—l afxn>

Smax{d(xn—l7xn>7d(xn—l7fxn—1)7d(xn7fxn)7
d(xy_1,fxn)+d(x, fx,—
(Xn—1.f: )er( f ‘)}—(p(d(

Xn—1,%n))
< max{d(x,—1,%n),d(Xn,Xn+1)} — @(d(Xp—1,%3))-
If d(xp—1,%,) < d(xp,%,41) for some n then ¢(d(x,—1,x,)) =0 so that x,—1 = f(x,—1),
a contradiction.

Therefore

(11) d(xnaanrl) <d(xnflaxn)_(P(d(xnflaxn))



12 G. V.R. BABU AND G. SATYANARAYANA

so that {d(x,_1,x,)} is a decresing sequence of nonnegative real numbers and hence
r}ijlgod(xn,l,xn) exists, and it is r (say), r > 0.

From (11) it follows that }glgod(xn,l ,Xn) = 0 so that ,}EI;%({X”*I}’ Tx,—1)=0.
Hence, by Corollary 3.1, T has a unique endpoint x.

Hence the conclusion of the theorem follows. O

Remark 3.3. Theorem 1.2 follows as a corollary to Theorem 3.2, since the inequality (2) implies

the inequality (10).

Conflict of Interests

The authors declare that there is no conflict of interests.

REFERENCES

[1] Ya.I. Alber and S. Guerre-Delabriere, Principle of weakly contractive maps in Hilbert spaces, in: I. Gohberg,
Yu. Lyubich, (Eds), New Results in Operator Theory and Its Appl., Oper. Theory Adv. Appl., 98 (1997),
7-22.

[2] A. Amini- Harandi, Endpoints of set-valued contractions in metric spaces, Nonlinear Anal., 72(1) (2010),
132-134.

[3] M. Fakhar, Endpoints of set-valued asymptotic contractions in metric spaces, Appl. Math. Lett., 24(4) (2011),
428-431.

[4] N. Hussain, A. Amini-Harandi and Y. J. Cho, Approximate endpoints for set-valued contractions in metric
spaces, Fixed point Theory Appl., 2010 (2010), Article ID: 614867, 13pages.

[5] W. A. Kirk, P. S. Srinivasan and P. Veeramani, Fixed points for mappings satisfying cyclical contractive
conditions, Fixed Point Theory., 4(1) (2003), 79-89 .

[6] S. Moradi and F. Khojasteh, Endpoints of multi-valued generalized weak contraction mappings, Nonlinear
Anal., 74(6) (2011), 2170-2174.

[7] S.Moradi, Endpoints of multi-valued cyclic contraction mappings, Int. J. Nonlinear Anal. Appl., 9(1) (2018),
203-210.

[8] S. B. Nadler, Multi-valued contraction mappings, Pac. J. Math., 30(2) (1969), 475-488.

[9] B. E. Rhoades, Some theorems on weakly contractive maps, Nonlinear Anal., 47(4) (2001), 2683-2693.

[10] D. Wardowski, Endpoints and fixed points of a set-valued contractions in cone metric spaces, Nonlinear
Anal., 71 (2009), 512-516.
[11] K. Wtodarczyk, D. Klim and R. Plebaniak, Existence and uniqueness of endpoints of closed set-valued as-

ymptotic contractions in metric spaces, J. Math. Anal. Appl., 328(1) (2007), 46-57.



EXISTENCE OF ENDPOINTS OF MULTI-VALUED ALMOST ¢—CYCLIC WEAKLY CONTRACTIVE MAPS 13

[12] K. Witodarczyk and R. Plebaniak, Endpoint theory for set-valued nonlinear asymptotic contractions with

respect to generalized pseudodistances in uniform spaces, J. Math. Anal. Appl., 339(1) (2008), 344-358.



