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Abstract. We introduce multi-valued almost ϕ−cyclic weakly contractive maps and prove the existence and

uniqueness of endpoints in complete metric spaces when such map has the approximate cyclic endpoint property.

Our results generalize the earlier results that are existing in the literature. Examples are provided in support of our

results and for the justification of the hypotheses.
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1. INTRODUCTION

In 1969, Nadler[8] extended a well known Banach contraction principle to multi-valued map-

pings. Since then, fixed point theory draws many authors’ attention towards the study of fixed

points for multi-valued mappings in various metric spaces.

In 2003, Kirk, Srinivasan and Veeramani[5] introduced the concept of cyclic mappings and

extended Banach contraction principle in the case of cyclic contraction mappings. Now a days,
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the study of the existence and uniqueness of endpoints for a multi-valued mapping in metric

spaces has gained a lot of importance. For more literature, we refer [2, 3, 4, 6, 7, 10, 11, 12]

and the related references therein.

Let (X ,d) be a metric space, Pcl,bd(X) be the set of all closed and bounded subsets of X and

we consider the Hausdorff metric H on Pcl,bd(X) induced by d, that is,

H (A,B) = max{sup
u∈A

dist(u,B),sup
v∈B

dist(A,v)}where dist(x,A) = inf{d(x,a) : a∈ A}. Also, we

denote δ (x,A) = sup{d(x,a) : a ∈ A}.

Let T : X → Pcl,bd(X) be a multi-valued map. A point x ∈ X is called a fixed point (endpoint)

of T if x ∈ T x (T x = {x}) and we denote the set of all fixed points of T by Fix(T ) and the set

of all endpoints of T by End(T ).

Definition 1.1. [7] Let X be a metric space, T : X → Pcl,bd(X) be a multi-valued mapping,

f : X → X be a self-map and {Xi}m
i=1 be a nonempty class of nonempty subsets of X.

Let Xn = Xi if n≡ i (mod m). Then

(i) X =
m⋃

i=1
Xi is called a cyclic representation on X with respect to T if T xi ⊆ Xi+1, xi ∈ Xi for

i ∈ {1,2, ...m} with Xm+1 = X1.

(ii) X =
m⋃

i=1
Xi is called a cyclic representation on X with respect to f if f (xi) ∈ Xi+1, xi ∈ Xi

for i ∈ {1,2, ...m} with Xm+1 = X1.

(iii) T has the approximate cyclic endpoint property if there exists a sequence {xn}∞
n=1 such

that xn ∈ Xn for every n and lim
n→∞

H ({xn},T xn) = 0.

(iv) We say that the fixed point problem is well posed for T if T has a unique endpoint and for

any sequence {xn} such that xn ∈ Xn and lim
n→∞

H ({xn},T xn) = 0 implies that lim
n→∞

xn = x

for some x ∈ X.

Remark 1.1. If X =
m⋃

i=1
Xi is a cyclic representation on X with respect to T (or f ) then X =

m⋂
i=1

Xi

contains all fixed points of T (or f ).

Throught this paper, we denote [0,∞) by R+. We write

Φ = {ϕ : R+→ R+/ (i) ϕ(t) = 0 if and only if t = 0, (ii) ϕ(t)< t for t > 0 and

(iii) ϕ(tn)→ 0 implies that tn→ 0}.
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Theorem 1.1. ([7], Theorem 3.1) Let (X ,d) be a complete metric space, {Xi}m
i=1 be a nonempty

class of nonempty closed subsets of X, T : X → Pcl,bd(X) be a multi-valued map and X =
m⋃

i=1
Xi

be a cyclic representation on X with respect to T . Let T be a cyclic weak ϕ− contraction map

for some ϕ ∈Φ, i.e., T satisfies

(1) H (T x,Ty)≤ d(x,y)−ϕ(d(x,y))

for x ∈ Xi and y ∈ Xi+1, i = 1,2, ...,m with Xm+1 = X1. Then T has a unique endpoint if and

only if T has the approximate cyclic endpoint property, that is, the fixed point problem is well

posed for T . Moreover, Fix(T ) = End(T ).

We call the map T of Theorem 1.1 that satisfies the inequality (1) as a multi-valued ϕ−cyclic

weakly contractive map. This name is suitable for such maps. For more details, we refer Alber

and Guerre-Delabriere[1] and Rhoades[9].

Theorem 1.2. ([7], Theorem 3.4) Let (X ,d) be a complete metric space, {Xi}m
i=1 be a nonempty

class of nonempty closed subsets of X, f : X → X be a selfmap and X =
m⋃

i=1
Xi be a cyclic

representation on X with respect to f . Let f be a cyclic ϕ−contraction for some ϕ ∈Φ, i.e.,

(2) d( f x, f y)≤ d(x,y)−ϕ(d(x,y))

for x ∈ Xi, y ∈ Xi+1, i = 1,2, ...,m with Xm+1 = X1. Then f has a unique fixed point.

Here we observe that the ϕ that is applied to prove Theorem 1.1 and Theorem 1.2, the con-

dition (ii) of ϕ ∈ Φ is not used any where in the proofs. Hence, we replace Φ by Φ1 where

Φ1 = {ϕ : R+→ R+/(i) ϕ(t) = 0 if and only if t = 0,and

(ii) ϕ(tn)→ 0 implies that tn→ 0}.

In fact Φ1 is larger than Φ, for example, the mapping ϕ : R+→ R+ defined by ϕ(t) = t + sin t,

t ≥ 0, is in Φ1 but not in Φ.

In Section 2, we define multi-valued ‘almost ϕ−cyclic weakly contractive maps for ϕ ∈Φ1’

and show that the class of all such maps is larger than the ‘class of multi-valued ϕ−cyclic

weakly contractive maps for ϕ ∈ Φ1’. In Section 3, we prove the existence of endpoints of
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multi-valued almost ϕ−cyclic weakly contractive map (Theorem 3.1). Also, we show the im-

portance of considering L > 0 in the almost ϕ−cyclic weakly contractive map in Theorem 3.1

(Example3.1). Our result generalize Theorem 1.1.

2. PRELIMINARIES

In the following, we define multi-valued almost ϕ−cyclic weakly contractive maps for

ϕ ∈Φ1.

Definition 2.1. Let X be a metric space, T : X → Pcl,bd(X) be a multi-valued mapping, {Xi}m
i=1

be a nonempty class of nonempty subsets of X and X =
m⋃

i=1
Xi be a cyclic representation on X

with respect to T . If there exist L≥ 0 and ϕ ∈Φ1 such that

(3) H (T x,Ty)≤M(x,y)−ϕ(d(x,y))+Lδ (x,T x)

where M(x,y)=max{d(x,y),δ (x,T x),δ (y,Ty), δ (x,Ty)+δ (y,T x)
2 }, x∈Xi, y∈Xi+1 for i= 1,2, ...,m

with Xm+1 = X1 then we say that T is a multi-valued almost ϕ−cyclic weakly contractive map.

Here we note that a map T that satisfies (1) is continuous, whereas a map T that satisfies (3)

need not be continuous. Also, we note that a map T that satisfies (1) implies that it satisfies (3)

but its converse is not true due to the following example.

Example 2.1. We consider the usual metric on X = [0,1] so that X is a complete metric space

and X1 = [0, 1
2 ] , X2 = [1

4 ,
3
4 ], X3 = [3

8 ,1] are closed subsets of X.

We define T : X → Pcl,bd(X) by

T x =



[3
8 + x, 1

2 − x] if 0≤ x≤ 1
16

[1
2 − x, 3

8 + x] if 1
16 ≤ x≤ 1

8

[1
2 −

x
2 ,

3
8 +

x
2 ] if 1

8 < x≤ 1
4

[1
2 −

x
4 ,

3
8 +

x
4 ] if 1

4 < x≤ 1
2

[1
2 −

x
8 ,

3
8 +

x
8 ] if 1

2 < x≤ 1.

Then X =
3⋃

i=1
Xi is a cyclic representation on X with respect to T .
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We define ϕ : R+→ R+ by ϕ(t) = 4t
5 so that ϕ ∈Φ1.

Then T is a multi-valued almost ϕ−cyclic weakly contractive map with L = 1, i.e.,

H (T x,Ty) ≤ M(x,y)− ϕ(d(x,y)) + δ (x,T x) where x ∈ Xi and y ∈ Xi+1 for i = 1,2,3 with

X4 = X1. But, T does not satisfy the inequality (1), for example,

we choose x = 27
112 and y = 53

104 so that T (x) = [ 85
224 ,

111
224 ], T (y) = [363

832 ,
365
832 ] and

H (T x,Ty) = 331
5824 �

391
7280 = d(x,y)−ϕ(d(x,y)).

Here we note that T is not continuous at 1
2 ∈

3⋂
i=1

Xi = [3
8 ,

1
2 ], for example, we consider

the sequence pn =
n+3

2n+2 so that pn→ 1
2 , T pn = [1

2 −
pn
8 ,

3
8 +

pn
8 ] = [ 7n+5

16n+16 ,
7n+9

16n+16 ], T 1
2 = [3

8 ,
1
2 ]

and H (T pn,T 1
2) = max{0, n−1

16n+16}=
n−1

16n+16 9 0.

The following lemma is useful in proving our main results.

Lemma 2.1. Let (X ,d) be a metric space and {xn}∞
n=1 be a sequence in X such that

lim
n→∞

d(xn,xn+1) = 0. If {xn}∞
n=1 is not a Cauchy sequence in X then there exist ε > 0 and a

subsequence {xn(k)}∞
k=1 of {xn}∞

n=1 such that lim
k→∞

d(xn(k),xn(k+1)) = ε . Moreover, there exists a

positive integer N0 such that n(k+1)−n(k)≥ 2 for all k with n(k)≥ N0.

Proof. Since {xn}∞
n=1 is not Cauchy, there exist ε > 0 and a strictly increasing sequence {n(k)}∞

k=1

of positive integers such that n(k+1) is the smallest positive integer greater than n(k) such that

d(xn(k),xn(k+1))≥ ε for k = 1,2,3, ... .

We consider

ε ≤ d(xn(k+1),xn(k))≤ d(xn(k+1),xn(k+1)−1)+d(xn(k+1)−1,xn(k))

≤ d(xn(k+1),xn(k+1)−1)+ ε for k = 1,2, ... .

Since lim
n→∞

d(xn,xn+1) = 0, we have lim
k→∞

d(xn(k),xn(k+1)) = ε. Also, there is a positive integer

N0 such that d(xn,xn+1)< ε for n≥ N0. If n(k+1) = n(k)+1 for some k with n(k)≥ N0 then

d(xn(k),xn(k+1)) = d(xn(k),xn(k)+1)< ε , a contradiction.

Therefore n(k+1)−n(k)≥ 2 for all k with n(k)≥ N0. �
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3. ENDPOINTS OF MULTI-VALUED ALMOST ϕ−CYCLIC WEAKLY

CONTRACTIVE MAPS

Proposition 3.1. Let (X ,d) be a complete metric space, {Xi}m
i=1 be a nonempty class of nonempty

closed subsets of X and T : X → Pcl,bd(X) be a map. Assume that X =
m⋃

i=1
Xi is a cyclic repre-

sentation on X with respect to T and T is a multi-valued almost ϕ−cyclic weakly contractive

map. Let Xn = Xi whenever n≡ i (mod m) and {xn}∞
n=1 be an arbitrary sequence in X such that

xn ∈ Xn for every n and lim
n→∞

H ({xn},T xn) = 0. Then {xn}∞
n=1 converges to a point of

m⋂
i=1

Xi.

Proof. By taking x = xn and y = xn+1 in the inequality (3), we have

(4) ϕ(d(xn,xn+1))≤M(xn,xn+1)+Lδ (xn,T xn)−H (T xn,T xn+1),

where M(xn,xn+1) = max{d(xn,xn+1),δ (xn,T xn),δ (xn+1,T xn+1),
δ (xn,T xn+1)+δ (xn+1,T xn)

2 }

= max{H ({xn},{xn+1}),H ({xn},T xn),H ({xn+1},T xn+1),

H ({xn},T xn+1)+H ({xn+1},T xn)
2 }

≤H ({xn},T xn)+H (T xn,T xn+1)+H ({xn+1},T xn+1).

From (4), we have

ϕ(d(xn,xn+1))≤H ({xn},T xn)+H (T xn,T xn+1)+H ({xn+1},T xn+1)

+LH ({xn},T xn)−H (T xn,T xn+1).

On letting n→ ∞, it follows that lim
n→∞

ϕ(d(xn,xn+1)) = 0 so that

(5) lim
n→∞

d(xn,xn+1) = 0.

Now we prove that {xn}∞
n=1 is Cauchy. Otherwise, by Lemma 2.1, there exist ε > 0 and a

subsequence {xn(k)}∞
k=1 of {xn}∞

n=1 such that

(6) lim
k→∞

d(xn(k),xn(k+1)) = ε.

Also, there exists N0 ∈ Z+ such that n(k+1)−n(k)≥ 2 for all k with n(k)≥ N0.

Therefore for each k with n(k)≥ N0, there is an integer l(k) ∈ {1,2, ...,m} such that

n(k+1)− l(k)≡ (n(k)+1) (mod m) so that xn(k+1)−l(k) ∈ Xn(k)+1.

By the triangle inequality, it is easy to see that

|d(xn(k),xn(k+1))−d(xn(k),xn(k+1)−l(k))| ≤ d(xn(k+1),xn(k+1)−1)+d(xn(k+1)−1,xn(k+1)−2)+ ...+
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d(xn(k+1)−l(k)+1,xn(k+1)−l(k)) for all k.

On letting k→ ∞ from (5) and (6), it follows that

(7) lim
k→∞

d(xn(k),xn(k+1)−l(k)) = ε.

By taking x = xn(k) and y = xn(k+1)−l(k) in the inequality (3), we have

ϕ(d(xn(k),xn(k+1)−l(k)))≤M(xn(k),xn(k+1)−l(k))+Lδ (xn(k),T xn(k))−H (T xn(k),T xn(k+1)−l(k)),

where M(xn(k),xn(k+1)−l(k)) = max{d(xn(k),xn(k+1)−l(k)),δ (xn(k),T xn(k)),

δ (xn(k+1)−l(k),T xn(k+1)−l(k)),
δ (xn(k),T xn(k+1)−l(k))+δ (xn(k+1)−l(k),T xn(k))

2 }.

It is easy to see that

M(xn(k),xn(k+1)−l(k))≤H ({xn(k)},T xn(k))+H (T xn(k),T xn(k+1)−l(k))

+H ({xn(k+1)−l(k)},T xn(k+1)−l(k)).

Therefore

ϕ(d(xn(k),xn(k+1)−l(k))≤ (L+1)H ({xn(k)},T xn(k))+H ({xn(k+1)−l(k)},T xn(k+1)−l(k)).

On letting k→ ∞, we have lim
k→∞

ϕ(d(xn(k),xn(k+1)−l(k))) = 0.

Since ϕ ∈Φ1, we have lim
k→∞

d(xn(k),xn(k+1)−l(k)) = 0,

a contradiction due to (7).

Therefore {xn}∞
n=1 is a Cauchy sequence in X .

Since (X ,d) is a complete metric space, there exists x ∈ X such that lim
n→∞

xn = x.

For each 1≤ i≤ m, we consider the subsequence {xni} of {xn} where ni ≡ i ( mod m).

Since xni ∈ Xi and Xi is closed in X , it follows that x ∈ Xi for every i and so x ∈
m⋂

i=1
Xi. �

Theorem 3.1. In addition to the hypotheses of Proposition 3.1, if T is continuous at every point

of
m⋂

i=1
Xi then T has a unique endpoint if and only if T has the approximate cyclic endpoint

property.

Proof. We assume that T has an endpoint x ∈ X so that x ∈ Xn for every n by Remark 1.1.

If we take xn = x for n = 1,2,3... then lim
n→∞

H ({xn},T xn) = 0, that is, T has the approximate

cyclic endpoint property.

Conversely, we assume that T has the approximate cyclic endpoint property, i.e., there exists

a sequence {xn}∞
n=1 in X such that xn ∈ Xn and lim

n→∞
H ({xn},T xn) = 0.
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Therefore by Proposition 3.1, there exists x ∈
m⋂

i=1
Xi such that lim

n→∞
xn = x.

By the triangle inequality, we have

H ({x},T x)≤H ({x},{xn})+H ({xn},T xn)+H (T xn,T x) for every n and by using the con-

tinuty of T at x it follows that H ({x},T x) = 0 so that x ∈ End(T ).

Now we prove that T has a unique endpoint.

Let x,y ∈ End(T ) so that x,y ∈
m⋂

i=1
Xi and

d(x,y) = H (T x,Ty)≤M(x,y)−ϕ(d(x,y)+Lδ (x,T x)

= max{d(x,y),0,0,d(x,y)}−ϕ(d(x,y)).

Therefore, ϕ(d(x,y) = 0 so that x = y. �

Remark 3.1. Theorem 1.1 follows as a corollary to Theorem 3.1, since the inequality (1) implies

the inequality (3).

When L = 0 in the inequality (3), we have the following.

Corollary 3.1. Let {Xi}m
i=1 be a nonempty class of closed subsets of a complete metric space

(X ,d), T : X → Pcl,bd(X) be a multi-valued map and X =
m⋃

i=1
Xi be a cyclic representation X

with respect to T . Suppose that there exists ϕ ∈Φ1 such that

(8) H (T x,Ty)≤M(x,y)−ϕ(d(x,y))

where M(x,y)=max{d(x,y),δ (x,T x),δ (y,Ty), δ (x,Ty)+δ (y,T x)
2 }, x∈Xi, y∈Xi+1 for i= 1,2, ...,m

with Xm+1 = X1. Let Xn = Xi whenever n≡ i (mod m) and T is continuous on
m⋂

i=1
Xi.

Then T has a unique endpoint if and only if T has the approximate cyclic endpoint property.

Corollary 3.2. Let (X ,d) be a complete metric space, {Xi}m
i=1 be a nonempty class of closed

subsets of X, T : X→ Pcl,bd(X) be a multi-valued map and X =
m⋃

i=1
Xi be a cyclic representation

on X with respect to T . Suppose that T satisfies

(9) H (T x,Ty)≤M1(x,y)−ϕ(d(x,y))+Lδ (x,T x)

where L≥ 0, ϕ ∈Φ1, M1(x,y) = max{d(x,y),dist(x,T x),dist(y,Ty), dist(x,Ty)+dist(y,T x)
2 } where

x ∈ Xi, y ∈ Xi+1 for i = 1,2, ...,m with Xm+1 = X1. Let Xn = Xi whenever n ≡ i (mod m) and
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T is continuous at every point of
m⋂

i=1
Xi. Then T has a unique endpoint if and only if T has the

approximate cyclic endpoint property. Also, Fix(T ) = End(T ).

Proof. The conclusion follows from Theorem 3.1, since the inequality (9) implies

the inequality (3). We choose x ∈ End(T ). Now for any y ∈ Fix(T ),

d(x,y)≤H (T x,Ty)≤max{d(x,y),0,0,d(x,y)}−ϕ(d(x,y)) so that ϕ(d(x,y))≤ 0 and hence

y = x ∈ End(T ). Hence Fix(T ) = End(T ). �

The following is an example in support of Theorem 3.1.

Example 3.1. Let X = [0,1] with usual metric on the real line. We define

T : X → Pcl,bd(X) by T x = [a,b] where a = min{1
2 ,1− x} and b = max{1

2 ,1− x}.

Let X1 = [0, 1
2 ] and X2 = [1

2 ,1] so that X1∪X2 is a cyclic representation on X with respect to T .

We define ϕ : R+→ R+ by ϕ(t) =

 t if t ∈ [0, 1
2),

t
1+t if t ∈ [1

2 ,∞)
so that ϕ ∈Φ1.

Now we prove that T satisfies the inequality (3) with L = 1
2 .

Let x ∈ X1 and y ∈ X2 so that T x = [1
2 ,1− x] and Ty = [1− y, 1

2 ].

We assume that x+ y≤ 1.

For any u ∈ T x, dist(u,Ty) = u− 1
2 so that sup

u∈T x
dist(u,Ty) = 1−2x

2 and

for any v ∈ Ty, dist(T x,v) = 1
2 − v so that sup

v∈Ty
dist(T x,v) = 2y−1

2 .

Therefore, H (T x,Ty) = max{1−2x
2 , 2y−1

2 }=
1−2x

2 ,

M(x,y) = max{y− x,1−2x,2y−1,
1
2−x+max{y− 1

2 ,1−x−y}
2 }= 1−2x.

It is easy to see that

H (T x,Ty) = 1−2x
2 ≤ 1−2x− (y− x)+ 1−2x

2 ≤M(x,y)−ϕ(d(x,y))+ δ (x,T x)
2 .

Similarly, it is easy to verify the inequality (3) for the case x+ y > 1.

Hence T is a multi-valued almost ϕ−cyclic weakly contractive map.

We choose xn =

 n
2n+4 if n≡ 1 (mod 2)
n+4

2n+4 if n≡ 0 (mod 2).

Then xn ∈ Xn for n = 1,2,3... and lim
n→∞

H ({xn},T xn) =
4

2n+4 = 0.

Hence T has the approximate cyclic endpoint property.
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We observe that for any x∈X, H (T x,T 1
2)= |x−

1
2 | so that T is continuous on X1∩X2 = {1

2}.

Hence all the hypotheses of Theorem 3.1 hold and End(T ) = {1
2}.

Here we observe that H (T 1
4 ,T

3
4) =

1
4 �

1
6 = d(1

4 ,
3
4)−ϕ(d(1

4 ,
3
4)). Hence T fails to satisfy

the inequality (1) so that Theorem 1.1 is not applicable.

In the following, we give an example to show that a multi-valued almost ϕ− cyclic weakly

contractive map has no endpoints but may have fixed points if we relax the approximate cyclic

endpoint property in Theorem 3.1.

Example 3.2. We consider usual metric on X = [0,1] and X1 = [0, 1
2 ], X2 = [1

4 ,
3
4 ], X3 = [3

8 ,1].

We define T : X → Pcl,bd(X) by

T x =



[3
8 + x, 1

2 − x] if 0≤ x≤ 1
16

[1
2 − x, 3

8 + x] if 1
16 ≤ x≤ 1

8

[1
2 −

x
2 ,

3
8 +

x
2 ] if 1

8 < x≤ 1
4

[1
2 −

x
4 ,

3
8 +

x
4 ] if 1

4 < x≤ 1
2

[3
8 ,

1
2 ] if 1

2 ≤ x≤ 1.

Then X =
3⋃

i=1
Xi is a cyclic representation on X with respect to T .

We define ϕ : R+→ R+ by ϕ(t) = 4t
5 so that ϕ ∈Φ1.

Then T satisfies (3) with L = 1.

Since H (T x,Ty) = |x−y|
4 for any x,y∈ [1

4 ,
1
2 ] and H (T x,T 1

2) = 0 for any x∈ [1
2 ,1], it follows

that T is continuous on
3⋂

i=1
Xi = [3

8 ,
1
2 ].

If T has the approximate cyclic endpoint property, that is, there exists a sequence {xn}∞
n=1

such that lim
n→∞

H ({xn},T xn) = 0 where xn ∈ Xn for n = 1,2,3, ... with Xn = Xi whenever

n≡ i (mod m) then lim
n→∞

H ({x3n},T x3n) = 0.

If {x3n} ⊆ [3
8 ,

7
16 ] then T x3n = [1

2 −
x3n
4 , 3

8 +
x3n
4 ] and lim

n→∞
H ({x3n},T x3n) = lim

n→∞

3−6x3n
8 6= 0.

If {x3n} ⊆ [ 7
16 ,

1
2 ] then lim

n→∞
H ({x3n},T x3n) = lim

n→∞

5x3n−2
4 6= 0.

If {x3n} ⊆ [1
2 ,1] then T x3n = [3

8 ,
1
2 ] and lim

n→∞
H ({x3n},T x3n) = lim

n→∞
x3n− 3

8 6= 0,

a contradiction.
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Thus T fails to satisfy the approximate cyclic endpoint property, and observe that T has no

endpoints but Fix(T ) = [2
5 ,

1
2 ].

Remark 3.2. Remark 3.1, Example 3.1 and Example 3.2 show that Theorem 3.1 is a general-

ization of Theorem 1.1.

Theorem 3.2. Let (X ,d) be a complete metric space, {Xi}m
i=1 be a nonempty class of nonempty

closed subsets of X, f : X→ X be a selfmap and X =
m⋃

i=1
Xi be a cyclic representation on X with

respect to f . Suppose that there exists ϕ ∈Φ1 such that

(10) d( f x, f y)≤M(x,y)−ϕ(d(x,y))

where M(x,y)=max{d(x,y),d(x, f x),d(y, f y), d(x, f y)+d(y, f x)
2 }, x∈Xi, y∈Xi+1 for i= 1,2, ...,m

with Xm+1 = X1. Further, we assume that f is continuous at every point of
m⋂

i=1
Xi. Then

f has a unique fixed point.

Proof. Let Xn = Xi whenever n≡ i (mod m). Let x1 ∈ X1 be arbitrary and xn+1 = f (xn) so that

xn ∈ Xn for n = 1,2, ... .

We define T : X → Pcl,bd(X) by T x = { f x} for x ∈ X .

It is easy to see that T satisfies the inequality (8) and T is continuous on
m⋂

i=1
Xi.

Now we show that T has the approximate cyclic endpoint property.

We assume that f xn 6= xn for any n.

We consider

d(xn,xn+1) = d( f xn−1, f xn)

≤max{d(xn−1,xn),d(xn−1, f xn−1),d(xn, f xn),

d(xn−1, f xn)+d(xn, f xn−1)
2 }−ϕ(d(xn−1,xn))

≤max{d(xn−1,xn),d(xn,xn+1)}−ϕ(d(xn−1,xn)).

If d(xn−1,xn)≤ d(xn,xn+1) for some n then ϕ(d(xn−1,xn)) = 0 so that xn−1 = f (xn−1),

a contradiction.

Therefore

(11) d(xn,xn+1)< d(xn−1,xn)−ϕ(d(xn−1,xn))



12 G. V. R. BABU AND G. SATYANARAYANA

so that {d(xn−1,xn)} is a decresing sequence of nonnegative real numbers and hence

lim
n→∞

d(xn−1,xn) exists, and it is r (say), r ≥ 0.

From (11) it follows that lim
n→∞

d(xn−1,xn) = 0 so that lim
n→∞

H ({xn−1},T xn−1) = 0.

Hence, by Corollary 3.1, T has a unique endpoint x.

Hence the conclusion of the theorem follows. �

Remark 3.3. Theorem 1.2 follows as a corollary to Theorem 3.2, since the inequality (2) implies

the inequality (10).
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