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Abstract. In this paper we present Perov type fixed point theorems for contractive mappings in Gheorghiu’s sense

on spaces endowed with a family of vector valued pseudo-metrics. Applications to systems of integral equations

are given to illustrate the theory. The examples also prove the advantage of using vector valued pseudo-metrics

and matrices that are convergent to zero, for the study of systems of equations.
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1. INTRODUCTION

In this paper we are concerning with the solvability of the semilinear operator system

A1(x,y,z,w) = x

A2(x,y,z,w) = y

A3(x,y,z,w) = z

A4(x,y,z,w) = w


(1.1)
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in a complete gauge space X (space endowed with a family of pseudo-metrics). Here

A1,A2,A3,A4 : X4 → X are given nonlinear operators. Systems of this type arise from math-

ematical modelling of many interaction, competitive and cooperative processes from a variety

of disciplines, including physics, biology, chemistry, engineering and other sciences.

For instance, the system

x(t) =
∫ t

t−τ1

f1(s,x(σ1(s)),y(σ2(s)),z(σ3(s)),w(σ1(s)))ds

y(t) =
∫ t

t−τ2

f2(s,x(σ1(s)),y(σ2(s)),z(σ3(s)),w(σ1(s)))ds

z(t) =
∫ t

t−τ3

f3(s,x(σ1(s)),y(σ2(s)),z(σ3(s)),w(σ1(s)))ds

w(t) =
∫ t

t−τ4

f1(s,x(σ1(s)),y(σ2(s)),z(σ3(s)),w(σ1(s)))ds


(1.2)

is a mathematical model for the spread of two interacted infectious diseases with contact

rates that vary seasonally. In these equations x(t),y(t),z(t),w(t) represent the proportion of

infectives in a population at time t, for each of the four epidemics; τ1,τ2,τ3,τ4 stand for the

length of time an individual remains infectious of each one of the diseases; and f1, f2, f3, f4

are the proportion of new infectives per unit time for the four epidemics. The modified argu-

ments σ1(t),σ2(t),σ3(t),σ4(t) can be of retarded type, when σ1(t),σ2(t),σ3(t),σ4(t) ≤ t, or

of advanced type, if σ1(t),σ2(t),σ3(t),σ4(t) ≥ t. For only one disease, and without argument

deviations, such a model was introduced by Cooke and Kaplan [2] (see also Precup [8]).

It is obvious that system 1.1 can be viewed as a fixed point problem,

T (u) = u(1.3)

in the space X4, where u = (x,y,z,w) and T = (A1,A2,A3,A4). Therefore, we may think to

apply to 1.3, in X4 endowed with the gauge structure induced by that of X , different abstract

existences results from the theory of nonlinear operators on gauge spaces. Such a result is the

contraction principle extended to gauge spaces by Colojoara (1961) [1], Gheorghiu (1967) [4]

and Tarafdar (1974) [13]. However, as pointed out by Perov and Kibenko [7] in connection

with Banach’s contraction principle and Precup [9], for other abstract principles (Schauder’s,

Leray-Schauder’s and Krasnoselskii’s cone theorems), we may expect that better results can

be obtained for system 1.1 if X4 is endowed with a family of vector-valued pseudo-metrics.
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Of course, in this situation the contraction condition has to be expressed in terms of a matrix

instead of scalar Lipschitz constants allowing the two mappings A1,A2,A3 and A4 to satisfy

more relaxed Lipschitz conditions.

Our first goal in this paper is to present Perov type fixed point theorems for contractive map-

pings in Gheorghiu’s sense on spaces endowed with a family of vector-valued pseudo-metrics.

Then we present applications to system 1.2 with parameter standardization τ1 = τ2 = τ3 = τ4 = 1

in two cases:

(a) for advanced arguments τ1 = τ2 = τ3 = τ4 = t +4,

(b) for unmodified arguments τ1 = τ2 = τ3 = τ4 = t.

The use of a gauge structure is motivated by our interest in discussing long term behaviour of the

system, i.e., t ∈ [0,∞), while the advanced arguments in the first example lead to Gheorghiu’s

contraction notion. Our abstract results are new and complement the existing literature in fixed

point theory in gauge/uniform spaces. In addition, compared to previous applications in Precup

[10] and Precup-Viorel [11], our new applications give to the vector approach a new asset for

its use in the treatment of systems.

In order to make clear the connection of our results to the existing literature, we conclude this

introductory section recalling some definitions and results (details can be found in Precup [8]).

By a vector-valued metric on a set X one means a map d : X ×X → Rn with the following

properties: d(x,y) ≥ 0 for all x,y ∈ X and if d(x,y) = 0 then x = y; d(x,y) = d(y,x) for all

x,y ∈ X ; d(x,y)≤ d(x,z)+d(z,y) for all x,y,z ∈ X .

Here, if a = (a1,a2, . . . ,an), b = (b1,b2, . . . ,bn) ∈ Rn, then by a ≤ b we mean that ai ≤ bi

for i = 1,2, . . . ,n. A set X endowed with a vector-valued metric d is said to be a generalized

metric space. For the generalized metric spaces, the notions of a convergent sequence, Cauchy

sequence and completeness are similar to those for usual metric spaces.

Let (X ,d) be a generalized metric space. A map T : X → X is said to be a generalized

contraction if there exists a matrix M ∈Mn×n(R+) such that

Mk→ 0 as k→ ∞(1.4)

and
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d(T (x),T (y))≤Md(x,y) for all x,y ∈ X .

The Lipschitz matrix M satisfying 1.4 is said to be convergent to zero. The extension of Ba-

nach’s fixed point theorem to generalized contractions on spaces with a vector-valued metric is

due to Perov and Kibenko (see [7] and [8]).

Theorem 1. (Perov) Let (X ,d) be a complete generalized metric space and T : X → X be a

generalized contraction with Lipschitz matrix M. Then T has a unique fixed point x∗ and for

each x0 ∈ X, one has

d(T k(x0),x∗))≤Mk(I−M)−1d(x0,T (x0))

for all k ∈ N.

As concerns matrices which are convergent to zero, we mention the following equivalent

characterizations (see Precup [9]): If M be a square matrix of nonnegative numbers, then the

following statements are equivalent:

(i) the matrix M is convergent to zero;

(ii) I−M is non-singular and (I−M)−1 = I +M+M2 + . . . ;

(iii) |λ |< 1 for every λ ∈ C with det(M−λ I) = 0;

(iv) I−M is non-singular and (I−M)−1 has nonnegative elements.

Finally we recall basic definitions and results of the theory of gauge spaces. A map d : X×X→

R+ is said to be a pseudo-metric, or a gauge on the set X , if it has the following properties:

d(x,x) = 0, d(x,y) = d(y,x) and d(x,y) ≤ d(x,z)+ d(z,y) for all x,y,z ∈ X . A family P =

{dα}α∈Λ of pseudometrics on X (or a gauge structure on X) is said to be separating if for each

pair of points x,y ∈ X with x = y, there is a dα ∈P such that dα(x,y) = 0. A pair (X ,P) of a

nonempty set X and a separating gauge structure P on X is called a gauge space.

It is well-known (see Dugundji [5: pp. 198–204]) that any family P of pseudometrics on a

set X induces on X a structure U of uniform space and conversely, any uniform structure on X

is induced by a family of pseudo-metrics on X . In addition, U is separating (or Hausdorff) if

and only if P is separating. Hence we may identify gauge spaces to Hausdorff uniform spaces.

We now recall the notion of contraction on a gauge space, introduced by Gheorghiu [7] (see
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also Chi̧ s-Precup [2] and Angelov [1]). Let (X ,P) be a gauge space with P = {dα}α∈Λ .

A map T : D(T ) ⊂ X → X is a contraction if there exists a function ϕ : Λ→ Λ and a ∈ RΛ
+,

a = {aα}α∈Λ such that

dα(T (x),T (y))≤ aαdϕ(α)(x,y)

for all α ∈ Λ and x,y ∈ D(T ) and

Σ
∞
i=1aαaϕ(α)aϕ2(α) . . .aϕ i−1(α)dϕ i(α)(x,y)< ∞

for every α ∈ Λ and x,y ∈ D(T ). Here ϕ i is the i− th iterate of ϕ .

We note that this notion was first introduced by Marinescu [6] in locally convex spaces as-

suming that ϕ2 = ϕ and then by Colojoarǎ [1] in uniform spaces, under the same condition.

The case ϕ = 1Λ (identity) was considered by Tarafdar [13] (see also Frigon [3]). Also note

that a somewhat different notion of contraction in a uniform space was defined by Knill [5] in

terms of entourages.

Theorem 2. (Gheorghiu [4]) Let (X ,P) be a complete gauge space and let T : X→X be a con-

traction. Then T has a unique fixed point which can be obtained by successive approximations

starting from any element of X.

2. MAIN ABSTRACT RESULTS

In this section we introduce the notions of a vector-valued pseudo-metric, generalized gauge

space and generalized contraction. Then Gheorghiu’s theorem is extended for generalized con-

tractions on complete generalized gauge spaces. A second result is concerning with mappings

which are contractive in Gheorghiu’s sense only on one of its orbits. The results are Perov-

Gheorghiu mixtures and have the advantages of both approaches.

Definition 3. Let Z be a set. A vector-valued map D : Z×Z→Rn
+ is said to be a vector-valued

pseudo-metric, or a vector-valued gauge on Z, if it has the following properties: D(u,u) =

0; D(u,v) = D(v,u); and D(u,v) ≤ D(u,w)+D(w,v) for all u,v,w ∈ Z. Here again, if a =

(a1,a2, . . . ,an), b = (b1,b2, . . . ,bn) ∈ Rn, then by a≤ b we mean ai ≤ bi for i = 1,2, . . . ,n.

A family G = {Dα}α∈Λ of vector-valued pseudo-metrics on Z (or a generalized gauge struc-

ture on Z) is said to be separating if for each pair of points u,v∈ Z with u = v, there is a Dα ∈ G
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such that Dα(u,v) = 0. A pair (Z,G ) of a nonempty set Z and a separating generalized gauge

structure G on Z is called a generalized gauge space. For the generalized gauge spaces, the

notions of a convergent sequence, Cauchy sequence and completeness are similar to those for

usual gauge spaces.

By analogy, we can introduce the vector version of Gheorghiu’s notion of contraction.

Definition 4. Let (Z,G ) be a generalized gauge space with G = {Dα}α ∈Λ. A map T : D(T )⊂

Z→ Z is a generalized contraction if there exists a function ϕ : Λ→ Λ and M ∈Mn×n(R+)
Λ ,

M = {Mα}α∈Λ such that

Dα(T (u),T (v))≤MαDϕ(α)(u,v) for all α ∈ Λ and u,v ∈ D(T )(2.1)

and

Σ
∞
i=1MαMϕ(α)Mϕ2(α) . . .Mϕ i−1(α)Dϕ i(α)(u,v)< ∞(2.2)

for every α ∈ Λ and u,v ∈ D(T ).

Now the Perov type analog for generalized contractions of Gheorghiu’s fixed point theorem

reads as follows:

Theorem 5. Let (Z,G ) be a complete generalized gauge space and let T : Z → Z be a gen-

eralized contraction. Then T has a unique fixed point which can be obtained by successive

approximations starting from any element of Z.

Proof. Let u0 be an arbitrary element of Z. Define a sequence (uk) by

uk+1 = T (uk), k ∈ N.(2.3)

Then using 2.1 we have

Dα(uk,uk+1) = Dα(T (uk−1),T (uk))

≤ MαDϕ(α)(uk−1,uk)

= MαDϕ(α)(T (uk−2),T (uk−1))

≤ MαMϕ(α)Dϕ2(α)(uk−2,uk−1)
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...

≤ MαMϕ(α) . . .Mϕk−1(α)Dϕk(α)(u0,u1)

for every α ∈ Λ and k = 1,2, . . . . As a consequence we have

Dα(uk,uk+m) = Dα(uk,uk+1)+ · · ·+Dα(uk+m−1,uk+m)

≤ Σ
m−1
n=0 MαMϕ(α) . . .Mϕk+n−1(α)Dϕk+n(α)(u0,u1)

= Σ
k+m−1
i=k MαMϕ(α) . . .Mϕ i−1(α)Dϕ i(α)(u0,u1).

Hence, according to 2.2, (uk) is a Cauchy sequence. Let u∗ be its limit. Then, letting k→ ∞ in

2.3 gives u∗ = T (u∗). For uniqueness, assume that u1,u2 are two fixed points of T . Then

Dα(u1,u2) = Dα(T (u1),T (u2))

≤ MαDϕ(α)(u1,u2)

≤ MαMϕ(α)Dϕ2(α)(u1,u2)

...

≤ MαMϕ(α) . . .Mϕk−1(α)Dϕk(α)(u1,u2)

and using 2.2 we obtain that Dα(u1,u2) = 0 for every α ∈ Λ . Since family G is separating we

deduce that u1 = u2.

�

From the proof of Theorem 5 we immediately obtain the following result guaranteeing the

existence of a fixed point as limit of the successive approximation sequence which starts from

a given element of the space.

Theorem 6. Let (Z,G ) be a generalized gauge space with G = {Dα}α ∈Λ and let T : Z→ Z be

a mapping. Assume that there is u0 ∈ Z, C > 0,ϕ : Λ→Λ andM ∈Mn×n(R+)
Λ , M = {Mα}α∈Λ

such that the following conditions hold:

Dα(T (u),T (v))≤MαDϕ(α)(u,v) for all α ∈ Λ and u,v ∈ Z,
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Σ
∞
i=1MαMϕ(α)Mϕ2(α) . . .Mϕ i−1(α)Dϕ i(α)(u,v)< ∞(2.4)

Dα(u0,T (u0))≤C

for all α ∈ Λ. Then T has at least one fixed point which can be obtained by successive approx-

imations starting from u0.

Remark 7. Here are some useful particular cases: If there is an integer p ≥ 2 with ϕ p = ϕ ,

then conditions 2.2 and 2.4 reduce to the assumption that

Mϕ(α) . . .Mϕ p−1(α)

is convergent to zero for every α ∈ Λ.

Thus, if p = 2, that is ϕ2 = ϕ (Marinescu’s situation), then 2.2 and 2.4 hold if

Mϕ(α) is convergent to zero for every α ∈ Λ.

In particular, if ϕ = 1Λ (Tarafdar’s situation), then 2.2 and 2.4 are satisfied provided that Mα

is convergent to zero for every α ∈ Λ.

Now we turn back to system 1.1. We assume that X is a complete gauge space with the family

of pseudo-metrics P = {dα}α∈Λ. We denote Z :=X4, T :=(A1,A2,A3,A4) and G := {Dα}α∈Λ,

where

Dα(u,v) =



dα(x,x1)

dα(y,y1)

dα(z,z1)

dα(w,w1)


(2.5)

for every u := (x,y,z,w), v := (x1,y1,z1,w1) ∈ X4 and α ∈ Λ. Then (Z,G ) is a complete

generalized gauge space. Specialized to this case, Theorems 5 and 6 yield the following results.
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Theorem 8. Assume that (X ,P) is a complete gauge space with P = {dα}α∈Λ and that

there exists a function ϕ : Λ → Λ and nonnegative constants a1
α ,b

1
α ,c

1
α ,d

1
α , a2

α ,b
2
α ,c

2
α ,d

2
α

a3
α ,b

3
α ,c

3
α ,d

3
α , a4

α ,b
4
α ,c

4
α ,d

4
α such that

dα(A1(x,y,z,w),A1(x1,y1,z1,w1))≤ a1
αdϕ(α)(x,x1)+b1

αdϕ(α)(y,y1)+ c1
αdϕ(α)(z,z1)+d1

αdϕ(α)(w,w1),

dα(A2(x,y,z,w),A2(x1,y1,z1,w1))≤ a2
αdϕ(α)(x,x1)+b2

αdϕ(α)(y,y1)+ c2
αdϕ(α)(z,z1)+d2

αdϕ(α)(w,w1),

dα(A3(x,y,z,w),A3(x1,y1,z1,w1))≤ a3
αdϕ(α)(x,x1)+b3

αdϕ(α)(y,y1)+ c3
αdϕ(α)(z,z1)+d3

αdϕ(α)(w,w1),

dα(A4(x,y,z,w),A4(x1,y1,z1,w1))≤ a4
αdϕ(α)(x,x1)+b4

αdϕ(α)(y,y1)+ c4
αdϕ(α)(z,z1)+d4

αdϕ(α)(w,w1), ,


(2.6)

for all x,x1,y,y1,z,z1,w,w1 ∈ X and α ∈ Λ. Let

Mα =


a1

α b1
α c1

α d1
α

a2
α b2

α c2
α d2

α

a3
α b3

α c3
α d3

α

a4
α b4

α c4
α d4

α


If

Σ
∞
i=1MαMϕ(α)Mϕ2(α) . . .Mϕ i−1(α)Dϕ i(α)(u,v)< ∞(2.7)

for all u,v ∈ X4 and α ∈ Λ , then system 1.1 has a unique solution. Moreover, the solution is

the limit of the sequence of successive approximations

uk = (xk,yk,zk,wk),

xk+1 = A1(xk,yk,zk,wk),

yk+1 = A2(xk,yk,zk,wk)

zk+1 = A3(xk,yk,zk,wk),

wk+1 = A4(xk,yk,zk,wk)


(2.8)

for k = 0,1, . . . , and starting from any initial pair (x0,y0,z0,w0) ∈ X4.

Proof. Clearly inequalities 2.6 can be written in the vector form

Dα(T (u),T (v))≤MαDϕ(α)(u,v).

The result is now a direct consequence of Theorem 5.
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�

Theorem 9. Under the assumptions of Theorem 2.3, if there is u0 = (x0,y0,z0,w0) ∈ X4 and

C > 0 such that

Dα(u0,T (u0))≤C(2.9)

and

Σ
∞
i=1MαMϕ(α)Mϕ2(α) . . .Mϕ i−1(α) < ∞(2.10)

for every α ∈ Λ , then system 1.1 has at least one solution which is the limit of sequence 2.8

starting from u0.

Proof. The result is a direct consequence of Theorem 6. �

3. APPLICATIONS TO INTEGRAL SYSTEMS

Consider the system of integral equations with advanced argument

x(t) =
∫ t

t−1
f1(s,x(s+4),y(s+4),z(s+4),w(s+4))ds

y(t) =
∫ t

t−1
f2(s,x(s+4),y(s+4),z(s+4),w(s+4))ds

z(t) =
∫ t

t−1
f3(s,x(s+4),y(s+4),z(s+4),w(s+4))ds

w(t) =
∫ t

t−1
f4(s,x(s+4),y(s+4),z(s+4),w(s+4))ds


(3.1)

for t ∈ [0,∞).

Assume that

| f1(t,x,y,z,w)− f1(t,x1,y1,z1,w1)| ≤ k1(t)|x− x1|+ k2(t)|y− y1|+ k3(t)|z− z1|+ k4(t)|w−w1|,

| f2(t,x,y,z,w)− f2(t,x1,y1,z1,w1)| ≤ k5(t)|x− x1|+ k6(t)|y− y1|+ k7(t)|z− z1|+ k8(t)|w−w1|,

| f3(t,x,y,z,w)− f3(t,x1,y1,z1,w1)| ≤ k9(t)|x− x1|+ k10(t)|y− y1|+ k11(t)|z− z1|+ k12(t)|w−w1|,

| f4(t,x,y,z,w)− f4(t,x1,y1,z1,w1)| ≤ k13(t)|x− x1|+ k14(t)|y− y1|+ k15(t)|z− z1|+ k16(t)|w−w1|,


(3.2)

for every x,x1,y,y1,z,z1,w,w1 ∈ R, t ∈ [−1,∞) and some ki ∈ L1([−1,∞),R+),

i = {1,2,3,4, . . . ,16}. For each n ∈ N, let
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a1
n =

∫ 2n+1

n−1
k1(t)dt, b1

n =
∫ 2n+1

n−1
k2(t)dt, c1

n =
∫ 2n+1

n−1
k3(t)dt, d1

n =
∫ 2n+1

n−1
k4(t)dt

a2
n =

∫ 2n+1

n−1
k5(t)dt, b2

n =
∫ 2n+1

n−1
k6(t)dt, c2

n =
∫ 2n+1

n−1
k7(t)dt, d2

n =
∫ 2n+1

n−1
k8(t)dt

a3
n =

∫ 2n+1

n−1
k9(t)dt, b3

n =
∫ 2n+1

n−1
k10(t)dt, c3

n =
∫ 2n+1

n−1
k11(t)dt, d3

n =
∫ 2n+1

n−1
k12(t)dt

a4
n =

∫ 2n+1

n−1
k13(t)dt, b4

n =
∫ 2n+1

n−1
k14(t)dt, c4

n =
∫ 2n+1

n−1
k15(t)dt, d4

n =
∫ 2n+1

n−1
k16(t)dt

and consider the matrix

Mα =


a1

α b1
α c1

α d1
α

a2
α b2

α c2
α d2

α

a3
α b3

α c3
α d3

α

a4
α b4

α c4
α d4

α

 .

Also define the matrix M∞ by

M∞ =


|k1|L1([−1,∞)) |k2|L1([−1,∞)) |k3|L1([−1,∞)) |k4|L1([−1,∞))

|k5|L1([−1,∞)) |k6|L1([−1,∞)) |k7|L1([−1,∞)) |k8|L1([−1,∞))

|k9|L1([−1,∞)) |k10|L1([−1,∞)) |k11|L1([−1,∞)) |k12|L1([−1,∞))

|k13|L1([−1,∞)) |k14|L1([−1,∞)) |k15|L1([−1,∞)) |k16|L1([−1,∞))

 .

Our main result on system 3.1 is the following theorem.

Theorem 10. Let f1, f2, f3, f4 : [−1,∞)×R4→R be four continuous functions and assume that

inequalities 3.2 hold for some ki ∈ L1([−1,∞),R+), i = {1,2,3,4, . . . ,16}. In addition assume

that there is u0 = (x0,y0,z0,w0) ∈C([0,∞),R4) and C > 0 such that

|T (u0)(t)−u0(t)| ≤C for all t ∈ [0,∞),(3.3)

where T = (A1,A2,A3,A4) is given bellow. If the matrix

M∞→ 0,(3.4)

then system 3.1 has at least one solution (x,y,z,w) ∈C([0,∞),R4)
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Proof. We shall use Theorem 9. Here X = C[0,∞),Λ = N and for n ∈ N, dn : X ×X → R+ is

given by

dn(x,y) = max
t∈[n,2n+1]

|x(t)− y(t)|.

Let A1,A2,A3 : C[0,∞),R3→C[0,∞) be defined by

A1(x,y,z,w)(t) =
∫ t

t−1
f1(s,x(s+4),y(s+4),z(s+4),w(s+4))ds

A2(x,y,z,w)(t) =
∫ t

t−1
f2(s,x(s+4),y(s+4),z(s+4),w(s+4))ds

A3(x,y,z,w)(t)) =
∫ t

t−1
f3(s,x(s+4),y(s+4),z(s+4),w(s+4))ds

A4(x,y,z,w)(t)) =
∫ t

t−1
f4(s,x(s+4),y(s+4),z(s+4),w(s+4))ds


First we prove the Lipschitz condition 2.6 with ϕ : N → N given by ϕ(n) = n + 1. Let

t ∈ [n,2n+1]. We have t−1 ∈ [n−1,2n], and when s ∈ [t−1, t], then s+2 ∈ [n+1,2n+3]. It

follows that

|A(x,y,z,w)(t)−A(x1,y1,z1,w1)(t)|

≤
∫ 2n+1

n−1
| f1(s,x(s+4),y(s+4),z(s+4),w(s+4))

−
∫ 2n+1

n−1
f1(s,x1(s+4),y1(s+4),z1(s+4),w1(s+4))|ds

≤
∫ 2n+1

n−1
k1|x(s+4)− x1(s+4)|ds+

∫ 2n+1

n−1
k2|y(s+4)− y1(s+4)|ds

+
∫ 2n+1

n−1
k3|z(s+4)− z1(s+4)|ds+

∫ 2n+1

n−1
k4|w(s+4)−w1(s+4)|ds

≤ max
s∈[n+1,2n+3]

|x(s+4)− x1(s+4)|
∫ 2n+1

n−1
k1ds+ max

s∈[n+1,2n+3]
|y(s+4)− y1(s+4)|

∫ 2n+1

n−1
k2ds

+ max
s∈[n+1,2n+3]

|z(s+4)− z1(s+4)|
∫ 2n+1

n−1
k3ds+ max

s∈[n+1,2n+3]
|w(s+4)−w1(s+4)|

∫ 2n+1

n−1
k4ds

≤ max
τ∈[n+1,2n+3]

|x(τ)− x1(τ)|
∫ 2n+1

n−1
k1ds+ max

τ∈[n+1,2n+3]
|y(τ)− y1(τ)|

∫ 2n+1

n−1
k2ds

+ max
τ∈[n+1,2n+3]

|z(τ)− z1(τ)|
∫ 2n+1

n−1
k3ds+ max

τ∈[n+1,2n+3]
|w(τ)−w1(τ)|

∫ 2n+1

n−1
k4ds

= a1
ndn+1(x,x1)+b1

ndn+1(y,y1)+ c1
ndn+1(z,z1)+d1

ndn+1(w,w1).
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Taking the maximum over [n,2n+1] yields

dn(A1(x,y,z,w),A1(x1,y1,z1,w1))≤ a1
ndn+1(x,x1)+b1

ndn+1(y,y1)+ c1
ndn+1(z,z1)+d1

ndn+1(w,w1)

dn(A1(x,y,z,w),A1(x1,y1,z1,w1))≤ a1
ndϕ(n)(x,x1)+b1

ndϕ(n)(y,y1)+ c1
ndϕ(n)(z,z1)+d1

ndϕ(n)(w,w1)

for every (x,y,z,w),(x1,y1,z1,w1) ∈ X4.

Similarly, for A2,A3,A4 we have,

dn(A2(x,y,z,w),A2(x1,y1,z1,w1))≤ a2
ndϕ(n)(x,x1)+b2

ndϕ(n)(y,y1)+ c2
ndϕ(n)(z,z1)+d2

ndϕ(n)(w,w1)

dn(A3(x,y,z,w),A3(x1,y1,z1,w1))≤ a3
ndϕ(n)(x,x1)+b3

ndϕ(n)(y,y1)+ c3
ndϕ(n)(z,z1)+d3

ndϕ(n)(w,w1)

dn(A4(x,y,z,w),A4(x1,y1,z1,w1))≤ a4
ndϕ(n)(x,x1)+b4

ndϕ(n)(y,y1)+ c4
ndϕ(n)(z,z1)+d4

ndϕ(n)(w,w1)

for every (x,y,z,w),(x1,y1,z1,w1) ∈ X4.

Hence 2.6 holds. Furthermore, condition 2.9 is guaranteed by assumption 3.3. Also, for

every n ∈ N, Mn ≤M∞ and thus series 2.10 is dominated by

Σ
∞
k=0Mk

∞

which is convergent in view of assumption 3.4. Hence 2.10 is satisfied. Therefore Theorem 9

can be applied. �

4. AN INTEGRAL SYSTEM WITHOUT MODIFICATION OF THE ARGUMENT

Consider the system of integral equations

x(t) =
∫ t

t−1
f1(s,x(s+4),y(s+4),z(s+4),w(s+4))ds

y(t) =
∫ t

t−1
f2(s,x(s+4),y(s+4),z(s+4),w(s+4))ds

z(t) =
∫ t

t−1
f3(s,x(s+4),y(s+4),z(s+4),w(s+4))ds

w(t) =
∫ t

t−1
f4(s,x(s+4),y(s+4),z(s+4),w(s+4))ds


(4.1)

for t ∈ [0,∞), where x(t) = ψ1(t), y(t) = ψ2(t), z(t) = ψ3(t) and w(t) = ψ4(t) for t ∈ [−1,0]

and ψ1,ψ2,ψ3,ψ4 are given functions.

We assume that inequalities 3.2 hold for every x,x1,y,y1,z,z1,w,w1 ∈ R, t ∈ [0,∞) and some

ki ∈ L1
loc([0,∞),R+), i = {1,2,3,4, . . . ,16}. For n ∈ N\{0}, we denote
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a1
n =

∫ 2n+1

n−1
k1(t)dt, b1

n =
∫ 2n+1

n−1
k2(t)dt, c1

n =
∫ 2n+1

n−1
k3(t)dt, d1

n =
∫ 2n+1

n−1
k4(t)dt

a2
n =

∫ 2n+1

n−1
k5(t)dt, b2

n =
∫ 2n+1

n−1
k6(t)dt, c2

n =
∫ 2n+1

n−1
k7(t)dt, d2

n =
∫ 2n+1

n−1
k8(t)dt

a3
n =

∫ 2n+1

n−1
k9(t)dt, b3

n =
∫ 2n+1

n−1
k10(t)dt, c3

n =
∫ 2n+1

n−1
k11(t)dt, d3

n =
∫ 2n+1

n−1
k12(t)dt

a4
n =

∫ 2n+1

n−1
k13(t)dt, b4

n =
∫ 2n+1

n−1
k14(t)dt, c4

n =
∫ 2n+1

n−1
k15(t)dt, d4

n =
∫ 2n+1

n−1
k16(t)dt

and consider the matrix

Mα =


a1

α b1
α c1

α d1
α

a2
α b2

α c2
α d2

α

a3
α b3

α c3
α d3

α

a4
α b4

α c4
α d4

α

 .

Theorem 11. Let f1, f2, f3, f4 : [−1,∞)×R4→R be four continuous functions, ψ1,ψ2,ψ3,ψ4 ∈

C[−1,0] and assume that inequalities 3.2 hold for some ki ∈ L1
loc([0,∞),R+), i =

{1,2,3,4, . . . ,16}. For n ∈ N\{0} , matrix

Mn → 0(4.2)

then system 4.1 has a unique solution (x,y,z,w) ∈C[0,∞),R3.

Proof. The result follows from Theorem 8 if we take into account Remark 7 about Tarafdar’s

situation. Here X =C[0,∞), Λ = N\{0} , for each n ∈ N\{0},

dn : X×X → R+

is given by

dn(x,y) = max
t∈[0,n]

|x(t)− y(t)|,

ϕ : N\{0}→ N\{0} , ϕ(n) = n, and A1,A2,A3,A4 : C[0,∞),R4→C[0,∞) are defined by

A1(x,y,z,w)(t) =
∫ t

t−1
f1(s, x̃(s), ỹ(s), z̃(s), w̃(s))ds,

A2(x,y,z,w)(t) =
∫ t

t−1
f2(s, x̃(s), ỹ(s), z̃(s), w̃(s))ds,
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A3(x,y,z,w)(t) =
∫ t

t−1
f3(s, x̃(s), ỹ(s), z̃(s), w̃(s))ds,

A4(x,y,z,w)(t) =
∫ t

t−1
f4(s, x̃(s), ỹ(s), z̃(s), w̃(s))ds,

where

x̃(t) =


ψ1(t) f or −1≤ t < 0

x(t) f or t ≥ 0

ỹ(t) =


ψ2(t) f or −1≤ t < 0

y(t) f or t ≥ 0

z̃(t) =


ψ3(t) f or −1≤ t < 0

z(t) f or t ≥ 0

and

w̃(t) =


ψ4(t) f or −1≤ t < 0

w(t) f or t ≥ 0

�

Remark 12. When ki ∈ L1([0,∞),R+), i = {1,2,3,4, . . . ,16} then a sufficient condition for 4.2

to hold for every n ∈ N\{0} is that the matrix

M∞ =


|k1|L1([−1,∞)) |k2|L1([−1,∞)) |k3|L1([−1,∞)) |k4|L1([−1,∞))

|k5|L1([−1,∞)) |k6|L1([−1,∞)) |k7|L1([−1,∞)) |k8|L1([−1,∞))

|k9|L1([−1,∞)) |k10|L1([−1,∞)) |k11|L1([−1,∞)) |k12|L1([−1,∞))

|k13|L1([−1,∞)) |k14|L1([−1,∞)) |k15|L1([−1,∞)) |k16|L1([−1,∞))

 .(4.3)

Indeed, for each n ∈ N \{0} , one has Mn ≤M∞, whence, since the entries of all matrices are

non-negative, Mk
n ≤ Mk

∞ for all k ∈ N. Consequently, if Mk
∞ → 0 as k→ ∞ , then Mk

n → 0 as

k→ ∞ , too. However, 4.3 is not a necessary condition for 4.2 as shows the following contre-

example:

k1(t) = (t +1)−2,

ki = 0 f or i = {2,3,4, . . . ,16}.
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In this case

Mn =


n

n+1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


and

M∞ =


1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


Clearly, for every n ∈ N\{0}, Mn converges to zero, but M∞ does not.
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