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Abstract. The notion of tripled fixed point theorem introduced by V. Berinde and M. Borcut [5] and Sedghi et al

[22] introduced the concept of S- metric space. Our aim of this article is to extend the concept of tripled fixed point

in S- metric space and prove a tripled coincidence and common fixed point theorems for commuting mappings

with mixed g-monotone property in partially ordered S-metric spaces. We also give some examples in support of

our theorem.
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1. INTRODUCTION AND PRELIMINARIES

Fixed point theory is one of the most active field for the researchers. The first known result

for fixed point theory in metric space was given by Banach [4] namely as Banach contraction

principle. In last few decade this contraction principle was generalized and extend in many

ways. Beside this, some authors are interested and have tried to give generalizations of metric

spaces in different ways. In 1963 Gahler [10] gave the concepts of 2− metric space further in

1992 Dhage [9] modified the concept of 2− metric space and introduced the concepts of D−

∗Corresponding author

E-mail address: sachinmokhle08@gmail.com

†Research Scholar

Received February 07, 2023
1



2 RAJESH SHRIVASTAVA, SACHIN MOKHLE

metric space but in 2005 Mustafa and Sims [12] pointed out that these attempts are not valid

and introduced the concepts of G− metric space and proved fixed point theorems in G− metric

space. Many authors proved different fixed point theorems in G−metric space in different ways

see in [21] and references theirin. Sedghi et al. [20] modified the concepts of D− metric space

and introduced the concepts of D∗- metric space also proved a common fixed point theorems in

D∗- metric space.

Recently, Sedghi et al [22] introduced the concept of S- metric space which is different from

other space and proved fixed point theorems in S-metric space. They also gives some examples

of S- metric spaces which shows that S- metric space is different form other spaces. In fact they

gives following concepts of S- metric space.

Definition 1. Let X be a nonempty set. An S- metric space on X is a function S : X3→ [0,∞)

that satisfies the following conditions, for each x,y,z,a ∈ X,

(1) S(x,y,z)≥ 0,

(2) S(x,y,z) = 0 if and only if x = y = z,

(3) S(x,y,z)≤ S(x,x,a)+S(y,y,a)+S(z,z,a).

The pair (X ,S) is called an S- metric space.

Examples of such S - metric space are as follows,

Example 2. Let X = Rn and ‖ . ‖ a norm on X, then S(x,y,z) =‖ y+ z−2x ‖+ ‖ y− z ‖ is an

S- metric on X.

Example 3. Let X = Rn and ‖ . ‖ a norm on X, then S(x,y,z) =‖ x− z ‖ + ‖ y− z ‖ is an S-

metric on X.

Example 4. Let X be a nonempty set, d is ordinary metric on X, then S(x,y,z) = d(x,z)+d(y,z)

is an S- metric on X.

Lemma 5. Let (X ,S) be an S- metric space, then we have,

S(x,x,y) = S(y,y,x).
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Proof. By the third condition of S- metric, we have

S(x,x,y)≤ S(x,x,x)+S(x,x,x)+S(y,y,x)

and similarly

S(y,y,x)≤ S(y,y,y)+S(y,y,y)+S(x,x,y)

which implies that

S(x,x,y) = S(y,y,x).

�

Definition 6. Let (X ,S) be an S- metric space.

(1) A sequence {xn} in X is said to be converges to x if and only if S(xn,xn,x)→ 0 as n→∞.

That is for each ε > 0 there exists n0 ∈ N such that for all n ≥ n0, S(xn,xn,x) < ε and

we denote this by limn→∞xn = x.

(2) A sequence {xn} in X is said to be Cauchy sequence if and only if S(xn,xm,x)→ 0

as n,m→ ∞. That is for each ε > 0 there exists n0 ∈ N such that for all n,m ≥ n0,

S(xn,xm,x)< ε .

Definition 7. The S- metric space (X ,S) is said to be complete if every Cauchy sequence is

convergent.

Every S- metric on X defines a metric dS on X by

dS(x,y) = S(x,x,y)+S(y,y,x) ∀x,y ∈ X .(1.1)

Let τ be the set of all A⊂ X with x ∈ A if and only if there exists r > 0 such that BS(x,r)⊂ A.

Then τ is a topology on X . Also, nonempty subset A in the S- metric space (X ,S) is S- closed if

Ā = A.

Lemma 8. Let (X ,S) be a S- metric space and A is a nonempty subset of X. A is said S- closed

iof for any sequence {xn} is A such that xn→ x as n→ ∞, then x ∈ A.
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Very recently, In some very recent papers, Berinde and Borcut [5], Borcut and Berinde [6],

and Borcut [7] have introduced the concepts of tripled fixed point and tripled coincidence point,

respectively, for nonlinear contractive mappings F : X ×X ×X → X in partially ordered com-

plete metric spaces and obtained existence and uniqueness theorems of tripled fixed points and

tripled coincidence points, respectively, for some general classes of contractive type mappings.

The presented theorems in [5, 6, 7] extend several existing results in the literature [11]. We

recall the main concepts needed to present them.

Definition 9. Let (X,≤) is a partially ordered set and F : X ×X ×X → X. The mapping F is

said to have the mixed monotone property if F is nondecreasing monotone in first argument and

is a nonincreasing monotone in its second argument, that is, for any x,y ∈ X

x1,x2 ∈ X , x1 ≤ x2 =⇒ F(x1,y,z)≤ F(x2,y,z)

y1,y2 ∈ X , y1 ≤ y2 =⇒ F(x,y1,z)≥ F(x,y2,z)

z1,z2 ∈ X , z1 ≤ z2 =⇒ F(x,y,z1)≤ F(x,y,z2)

Definition 10. Let (X,≤) is a partially ordered set and F : X×X×X → X and g : X → X. The

mapping F is said to have the mixed g- monotone property if F is g- nondecreasing monotone

in first and third argument and is a g- nonincreasing monotone in its second argument, that is,

for any x,y,z ∈ X

x1,x2 ∈ X , g(x1)≤ g(x2) =⇒ F(x1,y,z)≤ F(x2,y,z)(1.2)

y1,y2 ∈ X , g(y1)≤ g(y2) =⇒ F(x,y1,z)≥ F(x,y2,z)(1.3)

z1,z2 ∈ X , g(z1)≤ g(z2) =⇒ F(x,y,z1)≤ F(x,y,z2)(1.4)

It is clear that Definition 10 reduced to 9 when g is the identity mapping.

Definition 11. An element (x,y,z) ∈ X ×X ×X is called a tripled fixed point of a mapping

F : X×X×X → X if

F(x,y,z) = x F(y,x,y) = y and F(z,y,x) = z.
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Definition 12. An element (x,y,z) ∈ X × X × X is called a tripled coincidence point of the

mappings F : X×X×X → X and g : X → X if

F(x,y,z) = g(x) F(y,x,y) = g(y) and F(z,y,x) = g(z).

It is easy to see that tripled coincidence point can be reduced to tripled fixed point on taking

g be an identity mapping.

The aim of this paper is to prove a tripled coincidence and common fixed point theorems for

commuting mappings with mixed g-monotone property in partially ordered S-metric spaces.

2. MAIN RESULTS

Our first result is the following

Theorem 13. Let (X ,S,≤) be a partially ordered S- metric space. Let F : X ×X ×X → X and

g : X → X be mappings such that F has the mixed g- monotone property on X and there exists

a k ∈
[
0, 1

3

)
S(F(x,y,z),F(u,v,w),F(a,b,c))≤ k[S(gx,gu,ga)+S(gy,gv,gb)+S(gz,gw,gc)](2.1)

for all x,y,z,u,v,w,a,b,c ∈ X for which gx≥ gu≥ ga, gy≤ gv≤ gb and gz≥ gw≥ gc where

either gx 6= gu 6= ga or gy 6= gv 6= gb or gz 6= gw 6= gc. If there exists x0,y0,z0 ∈ X such that

gx0 ≤ F(x0,y0,z0), gy0 ≥ F(y0,x0,y0) and gz0 ≤ F(z0,y0,x0).

We assume the following hypotheses,

(i). F(X×X×X)⊆ g(X),

(ii). g(X) is S-complete,

(iii). g is S- continuous and commutes with F.

Then F and g have a tripled coincidence point. If gx = gu = ga, gy = gv = gb and gz = gw =

gc, then F and g have common fixed point, that is, there exist x ∈ X such that

g(x) = F(x,x,x) = x.

Proof. Let x0,y0,z0 ∈ X such that gx0 ≤ F(x0,y0,z0), gy0 ≥ F(y0,x0,z0) and gz0 ≤ F(z0,y0,x0).

Since F : X ×X ×X ⊆ g(X), we can choose gx1,gy1,gz1 ∈ X such that gx1 = F(x0,y0,z0),
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gy1 = F(y0,x0,y0) and gz1 = F(z0,y0,x0). Again since F : X ×X ×X ⊆ g(X), we can choose

x2,y2,z2 ∈ X such that g(x2) = F(x1,y1,z1), gy2 = F(y1,x1,y1) and g(z2) = F(z1,y1,x1). Con-

tinuing this process, we can construct sequences {xn}, {yn} and {zn} in X such that

g(xn+1) = F(xn,yn,zn), g(yn+1) = F(yn,xn,yn) and g(zn+1) = F(zn,yn,xn)(2.2)

for all n > 0.

Next, we show that

g(xn)≤ g(xn+1), g(yn)≥ g(yn+1) and g(zn)≤ g(zn+1)(2.3)

for all n > 0.

Since g(x0)≤ F(x0,y0,z0) = g(x1), g(y0)≥ F(y0,x0,y0) = g(y1) and g(z0)≤ F(z0,y0,y0) =

g(z1), therefore, (2.3) holds for n = 0. Next, suppose that (2.3) holds for some fixed n≥ 0, that

is,

g(xn)≤ g(xn+1), g(yn)≥ g(yn+1) and g(zn)≤ g(zn+1)(2.4)

Since F is the mixed g−monotone property, from 2.4 and 1.2, we have

F(xn,y,z)≤ F(xn+1,y,z), F(yn+1,x,y)≤ F(yn,x,y) and F(zn,y,x)≤ F(zn+1,y,x)(2.5)

for all x,y,z ∈ X and from 2.4 and 1.3 we have

F(y,xn,y)≥ F(y,xn+1,y), F(x,yn+1,z)≥ F(x,yn,z) and F(z,y,xn)≥ F(z,y,xn+1)(2.6)

for all x,y ∈ X . If we take y = yn, x = xn and z = zn in 2.5, then we obtain and

g(xn+1) = F(xn,yn,zn)≤ F(xn+1,yn,zn),

F(yn+1,xn,yn+1)≤ F(yn,xn,yn) = g(yn+1)

g(zn+1) = F(zn,yn,xn)≤ F(zn+1,yn,xn)

(2.7)

If we take y = yn+1, x = xn+1 and z = zn+1 in 2.6 then



TRIPLED COMMON FIXED POINT RESULTS IN ORDERED S−METRIC SPACES 7

F(yn+1,xn,yn+1)≥ F(yn+1,xn+1,yn+1) = g(yn+2)

g(xn+2) = F(xn+1,yn+1,zn+1)≥ F(xn+1,yn,zn+1)

g(zn+2) = F(zn+1,yn+1,xn+1)≥ F(zn+1,yn,xn+1).

(2.8)

Now, from 2.7 and 2.8, we have

g(xn+1)≤ g(xn+2), g(yn+1)≥ g(yn+2) and g(zn+1)≤ g(zn+2).(2.9)

Therefore, by the mathematical induction, we conclude that 2.3 holds for all n≥ 0.

Continuing this process, one can easily verify that

g(x0)≤ g(x1)≤ g(x2)≤ .....≤ g(xn+1)≤ ...

g(y0)≥ g(y1)≥ g(y2)≥ .....≥ g(yn+1)≥ ...

and

g(z0)≤ g(z1)≤ g(z2)≤ .....≤ g(zn+1)≤ ...

If (xn+1,yn+1,zn+1) = (xn,yn,zn), then F and g have a tripled coincidence point. So we as-

sume (xn+1,yn+1,zn+1) 6= (xn,yn,zn) for all n ≥ 0, that is, we assume that either g(xn+1) =

F(xn,yn,zn) 6= g(xn) or g(yn+1) = F(yn,xn,yn) 6= g(yn) or g(zn+1) = F(zn,yn,xn) 6= g(zn).

Next, we claim that, for all n≥ 0,

S(gxn,gxn,gxn+1)≤
1
3
(3k)n[S(gx0,gx0,gx1)+S(gy0,gy0,gy1)+S(gz0,gz0,gz1)].(2.10)

For n = 1, we have

S(gx1,gx1,gx2) = S(F(x0,y0,z0),F(x0,y0,z0),F(x1,y1,z1))

≤ k[S(gx0,gx0,gx1)+S(gy0,gy0,gy1)+S(gz0,gz0,gz1)]

≤ 1
3
(3k)[S(gx0,gx0,gx1)+S(gy0,gy0,gy1)+S(gz0,gz0,gz1)].(2.11)
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Thus 2.10 holds for n = 1. Therefore, we presume that 2.10 holds for n > 0. Since g(xn+1)≥

g(xn), g(yn+1)≤ g(yn) and g(zn+1)≥ g(zn), from 2.1 and 2.2 we have

S(gxn,gxn,gxn+1) = S(F(xn−1,yn−1,zn−1),F(xn−1,yn−1,zn−1),F(xn,yn,zn))

≤ k[S(gxn−1,gxn−1,gxn)+S(gyn−1,gyn−1,gyn)+S(gzn−1,gzn−1,gzn)](2.12)

similarly, we have

S(gyn,gyn,gyn+1) = S(F(yn−1,xn−1,yn−1),F(yn−1,xn−1,yn−1),F(yn,xn,yn))

≤ k[S(gyn−1,gyn−1,gyn)+S(gxn−1,gxn−1,gxn)+S(gyn−1,gyn−1,gyn)].(2.13)

and

S(gzn,gzn,gzn+1) = S(F(zn−1,yn−1,xn−1),F(xn−1,yn−1,zn−1),F(zn,yn,xn))

≤ k[S(gzn−1,gzn−1,gzn)+S(gyn−1,gyn−1,gyn)+S(gxn−1,gxn−1,gxn)](2.14)

By adding 2.12,2.13 and 2.14, then we get

S(gxn,gxn,gxn+1)+S(gyn,gyn,gyn+1)+S(gzn,gzn,gzn+1)

≤ 3k[S(gxn−1,gxn−1,gxn)+S(gyn−1,gyn−1,gyn)+S(gzn−1,gzn−1,gzn)]

Continuing the process, we have for each n ∈ N,

S(gxn,gxn,gxn+1)+S(gyn,gyn,gyn+1)+S(gzn,gzn,gzn+1)

≤ 1
3
(3k)n[S(gx0,gx0,gx1)+S(gy0,gy0,gy1)+S(gz0,gz0,gz1)]

≤ (3k)n

3(1−3k)
[S(gx0,gx0,gx1)+S(gy0,gy0,gy1)+S(gz0,gz0,gz1)]

Letting n→ ∞, we have

lim
n→∞

[S(gxn,gxn,gxn+1)+S(gyn,gyn,gyn+1)+S(gzn,gzn,gzn+1)] = 0.

That is

lim
n→∞

S(gxn,gxn,gxn+1) = 0,

lim
n→∞

S(gyn,gyn,gyn+1) = 0
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and

lim
n→∞

S(gzn,gzn,gzn+1) = 0.

Thus {gxn},{gyn} and {gzn} are S- Cauchy sequences in g(X).

Since g(X) is S-complete, we get {gxn},{gyn} and {gzn} are converges to some x ∈ X , y ∈ X

and z ∈ X respectively. Since g is S- continuous, we have {g(gxn)},{g(gyn)} and {g(gzn)} are

converges to gx, gy and gz respectively. that is

lim
n→∞

g(gxn) = gx,(2.15)

lim
n→∞

g(gyn) = gy(2.16)

and

lim
n→∞

g(gzn) = gz.(2.17)

Also from commutativity of F and g, we have

F((gxn),g(yn),g(zn)) = gF(xn,yn,zn) = g(gxn+1),(2.18)

F((gyn),g(xn),gyn)) = gF(yn,xn,yn) = g(gyn+1)(2.19)

and

F((gzn),g(yn),g(xn)) = gF(zn,yn,xn) = g(gzn+1),(2.20)

Next we claim that (x,y,z) is a tripled coincidence point of F and g.

Now from the condition 2.1, we have

S(g(gxn+1),g(gxn+1),F(x,y,z)) = S(F(gxn,gyn,gzn),F(gxn,gyn,gzn),F(x,y,z))

≤ k[S(gxn,gxn,gx)+S(gyn,gyn,gy)+S(gzn,gzn,gz)]

Letting n→ ∞ and using the fact that S is continuous on its variables, we get that

S(gx,gx,F(x,y,z))≤ k[S(gx,gx,gx)+S(gy,gy,gy)+S(gz,gz,gz)] = 0

Hence gx = F(x,y,z). Similarly, we may show that gy = F(y,x,y) and gz = F(z,y,x).
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Finally, we claim that x is common fixed point of F and g.

Since (x,y,z) is a tripled coincidence point of the mappings F and g, we gave gx = F(x,y,z),

gy = F(y,x) and gz = F(z,y,x). Assume that gx 6= gy 6= gz. Then by 2.1, we get

S(gx,gx,gy) = S(F(x,y,z),F(x,y,z),F(y,x,y))

≤ k[S(gx,gx,gy)+S(gy,gy,gx)+S(gz,gz,gy)]
(2.21)

also

S(gy,gy,gx) = S(F(y,x,y),F(y,x,y),F(x,y,z))

≤ k[S(gx,gx,gy)+S(gy,gy,gx)+S(gy,gy,gz)]
(2.22)

and

S(gz,gz,gy) = S(F(z,y,x),F(z,y,x),F(y,x,y))

≤ k[S(gz,gz,gy)+S(gy,gy,gx)+S(gx,gx,gy)]
(2.23)

by adding 2.21, 2.22 and 2.23 we have

S(gx,gx,gy)+S(gy,gy,gx)+S(gz,gz,gy)≤ 3k[S(gx,gx,gy)+S(gy,gy,gz)+S(gz,gz,gy)]

since k < 1
3 , we get

S(gx,gx,gy)+S(gy,gy,gx)+S(gz,gz,gy)≤ [S(gx,gx,gy)+S(gy,gy,gx)+S(gz,gz,gy)]

Which contradiction. So gx = gy = gz, and hence

F(x,y,z) = gx = gy = gz = F(y,x,y) = F(z,y,x).

Since {gxn+1} is subsequence of {gyn} we have {gyn+1} is S- convergent to x. Thus

S(gxn+1,gxn+1,gx) = S(gxn+1,gxn+1,F(x,y,z))

= S(F(xn,yn,zn),F(xn,yn,zn),F(x,y,z))

≤ k[S(gxn,gxn,gx)+S(gyn,gyn,gy)+S(gzn,gzn,gz)]

Letting n→ ∞ and use the fact that S is continuous on its variables, we get

S(x,x,gx) ≤ k[S(x,x,gx)+S(y,y,gy)+S(z,z,gz)]

Similarly, we may show that
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S(y,y,gy) ≤ k[S(x,x,gx)+S(y,y,gy)+S(z,z,gz)]

and

S(z,z,gz) ≤ k[S(x,x,gx)+S(y,y,gy)+S(z,z,gz)]

Thus

S(x,x,gx)+S(y,y,gy)+S(z,z,gz) ≤ 3k[S(x,x,gx)+S(y,y,gy)+S(z,z,gz)].

Since 3k < 1, the last inequality happens only if S(x,x,gx) = 0, S(y,y,gy) = 0 and S(z,z,gz) =

0. Hence x = gx, y = gy and z = gz. Thus we get gx = F(x,y,z) = x, gy = F(y,x,y) = y and

gz = F(z,y,x) = z. Thus F and g have a common fixed point. This completes the proof of the

theorem. �

Our second result of this paper is following.

Theorem 14. In the above theorem, in the place of condition (ii), if we assume the following

conditions in the complete S- metric space X, namely

if {xn} ⊂ X is a nondecreasing sequence with xn→ x ∈ X , then xn ≤ x, ∀n,(2.24)

if {yn} ⊂ X is a nonincreasing sequence with yn→ y ∈ X , then yn ≥ y, ∀n(2.25)

and

if {zn} ⊂ X is a nondecreasing sequence with zn→ z ∈ X , then zn ≤ z, ∀n.(2.26)

Then, we have the conclusion of Theorem 13, provided g is non decreasing.

Proof. Proceeding exactly as in Theorem 13, we have {gxn}, {gyn} and {gzn} are S- Cauchy

sequences in X . Since (X ,S) is a complete, there exists (x,y,z) ∈ X×X×X such that

lim
n→∞

F(xn,yn,zn) = lim
n→∞

g(xn) = x,(2.27)

lim
n→∞

F(yn,xn,yn) = lim
n→∞

g(yn) = y(2.28)
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and

lim
n→∞

F(zn,yn,xn) = lim
n→∞

g(zn) = z.(2.29)

Therefore, from (iii) we arrive at 2.15, 2.16 2.20 and 2.19. Since {gxn} is a non decreasing

sequence and gxn → x and as {gyn} is non increasing sequence and gyn → y also {gzn} is a

non decreasing sequence and gzn → z, by assumption 2.24 and 2.25 we have, g(gxn) ≤ gx,

g(gyn) ≥ gy and g(gzn) ≤ gz for all n ≥ 0. If g(gxn) = gx, g(gyn) = gy and g(gzn) = gz for

some n, then by construction g(gxn+1) = gx, g(gyn+1) = gy and g(gzn+1) = gz and (x,y,z) is

tripled fixed point. So we assume either g(gxn) 6= gx or g(gyn) 6= gy or g(gzn) 6= gz. Applying

the contractive condition 2.1, we have

S(F(x,y,z),F(x,y,z),gx)

≤ 3[S(F(x,y,z),F(x,y,z),F(gxn,gyn,gzn))

+S(F(x,y,z),F(x,y,z),F(gxn,gyn,gzn))+S(gx,gx,F(gxn,gyn,gzn))

= 3[S(F(x,y,z),F(x,y,z),F(gxn,gyn,gzn))

+S(F(x,y,z),F(x,y,z),F(gxn,gyn,gzn))+S(gx,gx,gF(xn,yn,zn))

≤ 3{2k[S(gx,gx,gxn)+S(gy,gy,gyn)+S(gz,gz,gzn)]+S(g(gx,gx,g(gxn+1))}

Taking n → ∞ in the above inequality we obtain S(F(x,y,z),F(x,y,z),gx) = 0, that is,

F(x,y,z) = g(x). Similarly we have that F(y,x,y) = g(y) and F(z,y,x) = g(z). Remaining part

of the proof follows from Theorem 13. Hence we have g(x) = F(x,x,x) = x. This completes

the proof of the theorem.

�

Corollary 15. Let (X ,S,≤) be a partially ordered S- metric space. Let F : X×X×X → X and

g : X → X be mappings such that F has the mixed g- monotone property on X and there exists

a k ∈
[
0, 1

3

)
S(F(x,y,z),F(x,y,z),F(u,v,w))≤ k[S(gx,gx,gu)+S(gy,gy,gv)+S(z,z,w)](2.30)
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for all x,y,z,u,v,w ∈ X for which gx≥ gu, gy≤ gv and gz 6= gw. If there exists x0,y0,z0 ∈ X

such that

gx0 ≤ F(x0,y0,z0), gy0 ≥ F(y0,x0,y0) and gz0 ≤ F(z0,y0,x0).

We assume the following hypotheses,

(i). F : (X×X×X)⊆ g(X),

(ii). g(X) is S-complete,

(iii). g is S- continuous and commutes with F.

Then F and g have a tripled coincidence point. If gx = gu, gy = gv and gz = gw, then F and

g have common fixed point, that is, there exist x ∈ X such that

g(x) = F(x,x,x) = x.

Proof. It follows from Theorem 13 if we take x = u, y = v and z = w . �

Corollary 16. Let (X ,S,≤) be a partially ordered S- metric space. Let F : X ×X ×X → X be

mapping such that F has the mixed monotone property on X and there exists a k ∈
[
0, 1

3

)
S(F(x,y,z),F(u,v,w),F(a,b,c))≤ k[S(x,u,a)+S(y,v,b)+S(z,w,c)](2.31)

for all x,y,z,u,v,w,a,b,c ∈ X for which x≥ u≥ a, y≤ v≤ b and z≥ w≥ c where either u 6= a

or v 6= b or w 6= c. If there exists x0,y0,z0 ∈ X such that

x0 ≤ F(x0,y0,z0), y0 ≥ F(y0,x0,y0) and z0 ≤ F(z0,y0,x0).

Then F has tripled fixed point in X. If u = a or v = b or w = c, then F has fixed point, that

is, there exist x ∈ X such that

x = F(x,x,x).

Proof. If we define g : X → X be an identity mapping in Theorem 13 then result is follows. �

Corollary 17. Let (X ,S,≤) be a partially ordered S- metric space. Let F : X ×X ×X → X be

mapping such that F has the mixed monotone property on X and there exists a k ∈
[
0, 1

3

)
S(F(x,y,z),F(x,y,z),F(a,b,c))≤ k[S(gx,gx,ga)+S(gy,gy,gb)+S(gz,gz,gc)](2.32)
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for all x,y,z,a,b,c ∈ X for which x ≥ a, y ≤ b and z ≥ c . If there exists x0,y0,z0 ∈ X such

that

x0 ≤ F(x0,y0,z0), y0 ≥ F(y0,x0,y0) and z0 ≤ F(z0,y0,x0).

Then F has a tripled fixed point. If x = a, y = b and z = c, then F has fixed point, that is,

there exist x ∈ X such that

x = F(x,x,x).

Proof. If we define g : X→ X be an identity mapping in Corollary 16 then result is follows. �

Now we present some examples to illustrate our results given by Theorem 13 and Theorem

14.

Example 18. Let X = R be ordered by the following relation

x≤ y⇐⇒ x = y or (x,y ∈ [0,1] and x≤ y).

Let a S- metric on X be defined by

S(x,y,z) =| x− z |+ | y− z | .

Then (X ,S) is a complete regular ordered S- metric space.

Let g : X → X and F : X×X×X → X be defined by

g(x) =


1

30x if x < 0

1
3(x) if x ∈ [0,1] and F(x,y,z) = x+y+z

30

1
30x+ 3

10 if x > 1,

Take k = 1
10 . Then we found that all the conditions of Theorem 13 and Theorem 14 are satisfied.

Obviously, the mappings g and F have a unique common tripled fixed point (0,0,0).

Example 19. Let X = [0,1], with the usual partial ordered ≤. Let a S- metric on X be defined

by

S(x,y,z) =| x− z |+ | y− z | .
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Then (X ,S) is a complete regular ordered S- metric space.

Let g : X → X and F : X×X×X → X be defined by

F(x,y,z) =
x+ y+ z

24
and g(x) =

x
3

(2.33)

Take k = 1
8 ∈

[
0, 1

3

)
. Then we found that all the conditions of Theorem 13 and Theorem 14 are

satisfied. Obviously, the mappings g and F have a unique common tripled fixed point (0,0,0).

Example 20. Let X = [0,1], with the usual partial ordered ≤. Let a S- metric on X be defined

by

S(x,y,z) =| x− z |+ | y− z | .

Then (X ,S) is a complete regular ordered S- metric space.

Let g : X → X and F : X×X×X → X be defined by

F(x,y) =
1
20

[sinx+ siny+ sinz] and g(x) =
x
5

(2.34)

for all x,y,z∈X. Since | sinx−siny |≤| x−y |, | siny−sinz |≤| y−z | and | sinz−sinx |≤| z−x |

holds for all x,y,z ∈ X. Then we have k = 1
4 ∈

[
0, 1

3

)
. So all the conditions of Theorem 13 and

Theorem 14 are satisfied. Then there exists a tripled fixed point of F. In this case (0,0,0) is

tripled fixed point of F.

Furthermore we show that Theorem 13 is not true for following example,

Example 21. Let X = [0,1], with the usual partial ordered ≤. Let a S- metric on X be defined

by

S(x,y,z) =| x− z |+ | y− z | .

Then (X ,S) is a complete regular ordered S- metric space.

Let g : X → X and F : X×X×X → X be defined by

F(x,y,z) =
x+ y,z

6
and g(x) =

x
3

(2.35)

Then there is no k = 1
8 ∈
[
0, 1

2

)
for which Theorem 13 is true Take k = 1

8 ∈
[
0, 1

2

)
. Then we found

that all the conditions of Theorem 13 and Theorem 14 are satisfied. Obviously, the mappings g

and F have a unique common tripled fixed point (0,0).
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Now in next section we give an another result for tripled fixed point which is generalization

of our Theorem 13.

3. GENERALIZATION OF TRIPLED FIXED POINT THEOREM

We begin this section with the following example,

Example 22. Let X be the set [0,∞) and

S(x,y,z) =| x− z |+ | y− z | .

We set g : X → X and F : X×X×X → X be defined as g(x) = x2 and

F(x,y) =


x2−y2−z2

4 if x≥ y≥ z

0 if otherwise

Then for k = 1
3 /∈

[
0, 1

3

)
we have tripled fixed point (0,0,0) in X.

Now we give first result of this section which as follows,

Theorem 23. Let (X ,S,≤) be a partially ordered S- metric space. Let F : X ×X ×X → X and

g : X → X be mappings such that F has the mixed g- monotone property on X and there exists

a k ∈ [0,1)

S(F(x,y,z),F(u,v,w),F(a,b,c))≤ k
3
[S(gx,gu,ga)+S(gy,gv,gb)+S(gz,gw,gc)](3.1)

for all x,y,z,u,v,w,a,b,c ∈ X for which gx ≥ gu ≥ ga, gy ≤ gv ≤ gb and gz ≥ gw ≥ gc where

either gx 6= gu 6= ga or gy 6= gv 6= gb or gz 6= gw 6= gc. If there exists x0,y0,z0 ∈ X such that

gx0 ≤ F(x0,y0,z0), gy0 ≥ F(y0,x0,z0) and gz0 ≤ F(z0,y0,x0).

We assume the following hypotheses,

(i). F : (X×X×X)⊆ g(X),

(ii). g(X) is S-complete,

(iii). g is S- continuous and commutes with F.
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Then F and g have a tripled coincidence point. If gx= gu= ga, gy= gv= gb and gz= gw= gc,

then F and g have common fixed point, that is, there exist x ∈ X such that

g(x) = F(x,x,x) = x.

Proof. Let x0,y0,z0 ∈ X such that gx0 ≤ F(x0,y0,z0), gy0 ≥ F(y0,x0,z0) and gz0 ≤ F(z0,y0,x0).

Since F : X ×X ×X ⊆ g(X), we can choose gx1,gy1,gz1 ∈ X such that gx1 = F(x0,y0,z0),

gy0 = F(y0,x0,y0) and gz1 = F(z0,y0,x0). Again since F : X ×X ×X ⊆ g(X), we can choose

x2,y2,z2 ∈ X such that g(x2) = F(x1,y1,z1), gy2 = F(y1,x1,y1) and g(z2) = F(z1,y1,x1). Con-

tinuing this process, we can construct sequences {xn}, {yn} and {zn} in X such that

g(xn+1) = F(xn,yn,zn), g(yn+1) = F(yn,xn,yn) and g(zn+1) = F(zn,yn,xn)(3.2)

for all n > 0.

Next, we show that

g(xn)≤ g(xn+1), g(yn)≥ g(yn+1) and g(zn)≤ g(zn+1).(3.3)

for all n > 0.

Since g(x0)≤ F(x0,y0,z0) = g(x1), g(y0)≥ F(y0,x0,y0) = g(y1) and g(z0)≤ F(z0,y0,y0) =

g(z1), therefore, (3.3) holds for n = 0. Next, suppose that (3.3) holds for some fixed n≥ 0, that

is,

g(xn)≤ g(xn+1), g(yn)≥ g(yn+1) and g(zn)≤ g(zn+1)(3.4)

Since F is the mixed g-monotone property, from 3.4 and 1.2, we have

F(xn,y,z)≤ F(xn+1,y,z), F(yn+1,x,y)≤ F(yn,x,y) and F(zn,y,x)≤ F(zn+1,y,x)(3.5)

for all x,y,z ∈ X and from 3.4 and 1.3 we have

F(y,xn,y)≥ F(y,xn+1,y), F(x,yn+1,z)≥ F(x,yn,z) and F(zn,y,x)≥ F(zn+1,y,x)(3.6)

for all x,y,z ∈ X . If we take y = yn, x = xn and z = zn in 3.5, then we obtain and

g(xn+1) = F(xn,yn,zn)≤ F(xn+1,yn,zn),

F(yn+1,xn,yn+1)≤ F(yn,xn,yn) = g(yn+1)

g(zn+1) = F(zn,yn,xn)≤ F(zn+1,yn,xn)

(3.7)
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If we take y = yn+1, x = xn+1 and z = zn+1 in 3.6 then

F(yn+1,xn,yn+1)≥ F(yn+1,xn+1,yn+1) = g(yn+2)

g(xn+2) = F(xn+1,yn+1,zn+1)≥ F(xn+1,yn,zn+1)

g(zn+2) = F(zn+1,yn+1,xn+1)≥ F(zn+1,yn,xn+1).

(3.8)

Now, from 3.7 and 3.8, we have

g(xn+1)≤ g(xn+2), g(yn+1)≥ g(yn+2) and g(zn+1)≤ g(zn+2).(3.9)

Therefore, by the mathematical induction, we conclude that 2.3 holds for all n≥ 0.

Continuing this process, one can easily verify that

g(x0)≤ g(x1)≤ g(x2)≤ .....≤ g(xn+1)≤ ...

g(y0)≥ g(y1)≥ g(y2)≥ .....≥ g(yn+1)≥ ...

and

g(z0)≤ g(z1)≤ g(z2)≤ .....≤ g(zn+1)≤ ...

If (xn+1,yn+1,zn+1) = (xn,yn,zn), then F and g have a tripled coincidence point. So we assume

(xn+1,yn+1,zn+1) 6= (xn,yn,zn)

for all n≥ 0, that is, we assume that either

g(xn+1) = F(xn,yn,zn) 6= g(xn)

or

g(yn+1) = F(yn,xn,yn) 6= g(yn)

or

g(zn+1) = F(zn,yn,xn) 6= g(zn).

Next, we claim that, for all n≥ 0,

S(gxn,gxn,gxn+1)≤
1
3
(3k)n[S(gx0,gx0,gx1)+S(gy0,gy0,gy1)+S(gz0,gz0,gz1)].(3.10)
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For n = 1, we have

S(gx1,gx1,gx2) = S(F(x0,y0,z0),F(x0,y0,z0),F(x1,y1,z1))

≤ k[S(gx0,gx0,gx1)+S(gy0,gy0,gy1)+S(gz0,gz0,gz1)]

≤ 1
3
(3k)[S(gx0,gx0,gx1)+S(gy0,gy0,gy1)+S(gz0,gz0,gz1)].

Thus 2.10 holds for n = 1. Therefore, we presume that 2.10 holds for n > 0. Since g(xn+1)≥

g(xn), g(yn+1)≤ g(yn) and g(zn+1)≥ g(zn), from 2.1 and 2.2 we have

S(gxn,gxn,gxn+1) = S(F(xn−1,yn−1,zn−1),F(xn−1,yn−1,zn−1),F(xn,yn,zn))

≤ k[S(gxn−1,gxn−1,gxn)+S(gyn−1,gyn−1,gyn)+S(gzn−1,gzn−1,gzn)](3.11)

similarly, we have

S(gyn,gyn,gyn+1) = S(F(yn−1,xn−1,yn−1),F(yn−1,xn−1,yn−1),F(yn,xn,yn))

≤ k[S(gyn−1,gyn−1,gyn)+S(gxn−1,gxn−1,gxn)+S(gyn−1,gyn−1,gyn)].(3.12)

and

S(gzn,gzn,gzn+1) = S(F(zn−1,yn−1,xn−1),F(xn−1,yn−1,zn−1),F(zn,yn,xn))

≤ k[S(gzn−1,gzn−1,gzn)+S(gyn−1,gyn−1,gyn)+S(gxn−1,gxn−1,gxn)](3.13)

By adding 3.11,3.12 and 3.13, then we get

S(gxn,gxn,gxn+1)+S(gyn,gyn,gyn+1)+S(gzn,gzn,gzn+1)

≤ 3k[S(gxn−1,gxn−1,gxn)+S(gyn−1,gyn−1,gyn)+S(gzn−1,gzn−1,gzn)](3.14)

Continuing the process, we have for each n ∈ N,

S(gxn,gxn,gxn+1)+S(gyn,gyn,gyn+1)+S(gzn,gzn,gzn+1)

≤ 1
3
(3k)n[S(gx0,gx0,gx1)+S(gy0,gy0,gy1)+S(gz0,gz0,gz1)]

≤ (3k)n

3(1−3k)
[S(gx0,gx0,gx1)+S(gy0,gy0,gy1)+S(gz0,gz0,gz1)]

Letting n→ ∞, we have
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lim
n→∞

[S(gxn,gxn,gxn+1)+S(gyn,gyn,gyn+1)+S(gzn,gzn,gzn+1)] = 0.

That is

lim
n→∞

S(gxn,gxn,gxn+1) = 0,

lim
n→∞

S(gyn,gyn,gyn+1) = 0

and

lim
n→∞

S(gzn,gzn,gzn+1) = 0.

Thus {gxn},{gyn} and {gzn} are S- Cauchy sequences in g(X).

Since g(X) is S-complete, we get {gxn},{gyn} and {gzn} are converges to some x ∈ X , y ∈ X

and z ∈ X respectively. Since g is S- continuous, we have {g(gxn)},{g(gyn)} and {g(gzn)} are

converges to gx, gy and gz respectively. that is

lim
n→∞

g(gxn) = gx,(3.15)

lim
n→∞

g(gyn) = gy(3.16)

and

lim
n→∞

g(gzn) = gz.(3.17)

Also from commutativity of F and g, we have

F((gxn),g(yn),g(zn)) = gF(xn,yn,zn) = g(gxn+1),(3.18)

F((gyn),g(xn),gyn)) = gF(yn,xn,yn) = g(gyn+1)(3.19)

and

F((gzn),g(yn),g(xn)) = gF(zn,yn,xn) = g(gzn+1),(3.20)

Next we claim that (x,y,z) is a tripled coincidence point of F and g.

Now from the condition 3.1, we have
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S(g(gxn+1),g(gxn+1),F(x,y,z)) = S(F(gxn,gyn),F(gxn,gyn),F(x,y,z))

≤ k[S(gxn,gxn,gx)+S(gyn,gyn,gy)]

Letting n→ ∞ and using the fact that S is continuous on its variables, we get that

S(gx,gx,F(x,y,z))≤ k
3
[S(gx,gx,gx)+S(gy,gy,gy)+S(gz,gz,gz)] = 0

Hence gx = F(x,y,z). Similarly, we may show that gy = F(y,x,y) and gz = F(z,y,x).

Finally, we claim that x is common fixed point of F and g.

Since (x,y,z) is a tripled coincidence point of the mappings F and g, we gave gx = F(x,y,z),

gy = F(y,x) and gz = F(z,y,x). Assume that gx 6= gy 6= gz. Then by 3.1, we get

S(gx,gx,gy) = S(F(x,y,z),F(x,y,z),F(y,x,y))

≤ k[S(gx,gx,gy)+S(gy,gy,gx)+S(gz,gz,gy)]
(3.21)

also

S(gy,gy,gx) = S(F(y,x,y),F(y,x,y),F(x,y,z))

≤ k[S(gx,gx,gy)+S(gy,gy,gx)+S(gy,gy,gz)]
(3.22)

and

S(gz,gz,gy) = S(F(z,y,x),F(z,y,x),F(y,x,y))

≤ k[S(gz,gz,gy)+S(gy,gy,gx)+S(gx,gx,gy)]
(3.23)

by adding 3.21, 3.22 and 3.28 we have

S(gx,gx,gy)+S(gy,gy,gx)+S(gz,gz,gy)≤ 3k[S(gx,gx,gy)+S(gy,gy,gz)+S(gz,gz,gy)]

since k < 1, we get

S(gx,gx,gy)+S(gy,gy,gx)+S(gz,gz,gy)≤ [S(gx,gx,gy)+S(gy,gy,gx)+S(gz,gz,gy)]

Which contradiction. So gx = gy = gz, and hence

F(x,y,z) = gx = gy = gz = F(y,x,y) = F(z,y,x).
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Since {gxn+1} is subsequence of {gyn} we have {gyn+1} is S- convergent to x. Thus

S(gxn+1,gxn+1,gx) = S(gxn+1,gxn+1,F(x,y,z))

= S(F(xn,yn,zn),F(xn,yn,zn),F(x,y,z))

≤ k[S(gxn,gxn,gx)+S(gyn,gyn,gy)+S(gzn,gzn,gz)]

Letting n→ ∞ and use the fact that S is continuous on its variables, we get

S(x,x,gx) ≤ k[S(x,x,gx)+S(y,y,gy)+S(z,z,gz)]

Similarly, we may show that

S(y,y,gy) ≤ k[S(x,x,gx)+S(y,y,gy)+S(z,z,gz)]

and

S(z,z,gz) ≤ k[S(x,x,gx)+S(y,y,gy)+S(z,z,gz)]

Thus

S(x,x,gx)+S(y,y,gy)+S(z,z,gz) ≤ 3k[S(x,x,gx)+S(y,y,gy)+S(z,z,gz)].

Since 3k < 1, the last inequality happens only if S(x,x,gx) = 0, S(y,y,gy) = 0 and S(z,z,gz) = 0.

Hence x = gx, y = gy and z = gz. Thus we get gx = F(x,y,z) = x, gy = F(y,x,y) = y and

gz = F(z,y,x) = z. Thus F and g have a common fixed point. This completes the proof of the

theorem. �

The following example show that Theorem 23 is more general then Theorem 13.

Example 24. Let X = [0,1], with the usual partial ordered ≤. Let a S- metric on X be defined

by

S(x,y,z) =| x− z |+ | y− z | .

Then (X ,S) is a complete regular ordered S- metric space.

Let g : X → X and F : X×X×X → X be defined by
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F(x,y,z) =
1
9
[sinx+ siny+ sinz] and g(x) =

x
3

(3.24)

for all x,y,z∈X. Since | sinx−siny |≤| x−y | and | sinz−siny |≤| z−y | holds for all x,y,z∈X.

Then we have k = 1
3 ∈ [0,1) . So all the conditions of Theorem 23 and Theorem 26 are satisfied.

Then there exists a tripled fixed point of F. In this case (0,0,0) is tripled fixed point of F.

Example 25. Let X be the set [0,∞) and

S(x,y,z) =| x− z |+ | y− z | .

We set g : X → X and F : X×X → X be defined as g(x) = x2 and

F(x,y) =


3x2−3y2−3z2+1

10 if x≥ y≥ z

0 if otherwise

Then for k = 3
5 ∈ [0,1) we have tripled fixed point (0,0,0) in X.

Theorem 26. In the above Theorem 23, in the place of condition (ii), if we assume the following

conditions in the complete S- metric space X, namely

if {xn},{zn} ⊂ X is a nondecreasing sequence with xn→ x ∈ Xandzn→ z ∈ Xthen(3.25)

zn ≤ z, ∀n,(3.26)

and

if {yn} ⊂ X is a nonincreasing sequence with yn→ y ∈ X , then yn ≥ y, ∀n.(3.27)

Then, we have the conclusion of Theorem 23, provided g is non decreasing.

Proof. Proceeding exactly as in Theorem 23, we have {gxn},{gyn} and {gzn} are S- Cauchy

sequences in X . Since (X ,S) is a complete, there exists (x,y,z) ∈ X×X×X such that

lim
n→∞

F(xn,yn,zn) = lim
n→∞

g(xn) = x(3.28)

lim
n→∞

F(yn,xn,yn) = lim
n→∞

g(yn) = y(3.29)
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and

lim
n→∞

F(zn,yn,xn) = lim
n→∞

g(zn) = z.(3.30)

Therefore, from (iii) we arrive at 3.15, 3.16 3.20 and 3.19. Since {gxn}, {gzn} are a non

decreasing sequences such that gxn→ x, gzn→ z and as {gyn} is non increasing sequence and

gyn → y, by assumption 3.25 and 3.27 we have, g(gxn) ≤ gx, g(gyn) ≥ gy and g(gzn) ≤ gz

for all n ≥ 0. If g(gxn) = gx, g(gyn) = gy and g(gzn) = gz for some n, then by construction

g(gxn+1) = gx, g(gyn+1) = gy and g(gzn+1) = gz and (x,y,z) is tripled fixed point. So we

assume either g(gxn) 6= gx or g(gyn) 6= gy or g(gzn) 6= gz. Applying the contractive condition

3.1, we have

S(F(x,y,z),F(x,y,z),gx)(3.31)

≤ 3[S(F(x,y,z),F(x,y,z),F(gxn,gyn,gzn))+S(F(x,y,z),F(x,y,z),F(gxn,gyn,gzn))

+S(gx,gx,F(gxn,gyn,gzn)

= 3[S(F(x,y,z),F(x,y,z),F(gxn,gyn,gzn))+S(F(x,y,z),F(x,y,z),F(gxn,gyn,gzn))

+S(gF(xn,yn,zn),gF(xn,yn,zn),gx)

≤ k[2S(x,x,gxn)+S(g(gxn+1),g(gxn+1),gx)]

Taking n → ∞ in the above inequality we obtain S(F(x,y,z),F(x,y,z),gx) = 0, that is,

F(x,y,z) = g(x). Similarly we have that F(y,x,y) = g(y) and F(z,y,x) = g(z). Remaining part

of the proof follows from Theorem 23. Hence we have g(x) = F(x,x,x) = x. This completes

the proof of the theorem.

�

Corollary 27. Let (X ,S,≤) be a partially ordered S- metric space. Let F : X×X×X → X and

g : X → X be mappings such that F has the mixed g- monotone property on X and there exists

a k ∈ [0,1)

S(F(x,y,z),F(x,y,z),F(u,v,w))≤ k
3
[S(gx,gx,gu)+S(gy,gy,gv)+S(gz,gz,gw)](3.32)

for all x,y,z,u,v,w ∈ X for which gx ≥ gu, gy ≤ gv and gz ≥ gw. If there exists x0,y0,z0 ∈ X

such that
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gx0 ≤ F(x0,y0,z0), gy0 ≥ F(y0,x0,y0) and gz0 ≤ F(z0,y0,x0).

We assume the following hypotheses,

(i). F : (X×X×X)⊆ g(X),

(ii). g(X) is S-complete,

(iii). g is S- continuous and commutes with F.

Then F and g have a tripled coincidence point. If gx = gu, gy = gv and gz = gw, then F and

g have common fixed point, that is, there exist x ∈ X such that

g(x) = F(x,x,x) = x.

Proof. It follows from Theorem 23 if we take x = u, y = v and z = w . �

Corollary 28. Let (X ,S,≤) be a partially ordered S- metric space. Let F : X ×X ×X → X be

mapping such that F has the mixed monotone property on X and there exists a k ∈ [0,1)

S(F(x,y,z),F(u,v,w),F(a,b,c))≤ k
3
[S(x,u,a)+S(y,v,b)+S(z,w,c)](3.33)

for all x,y,z,u,v,w,a,b,c ∈ X for which x ≥ u ≥ a, y ≤ v ≤ b and z ≥ w ≥ c where either

u 6= a or v 6= b or w 6= c. If there exists x0,y0,z0 ∈ X such that

gx0 ≤ F(x0,y0,z0), gy0 ≥ F(y0,x0,y0) and gz0 ≤ F(z0,y0,x0).

Then F has tripled fixed point in X. If u = a , v = b and w = c, then F has fixed point, that is,

there exist x ∈ X such that

x = F(x,x,x).

Proof. If we define g : X → X be an identity mapping in Theorem 23 then result is follows. �

Corollary 29. Let (X ,S,≤) be a partially ordered S- metric space. Let F : X ×X → X be

mapping such that F has the mixed monotone property on X and there exists a k ∈ [0,1)

S(F(x,y,z),F(x,y,z),F(u,v,w))≤ k
3
[S(gx,gx,gu)+S(gy,gy,gv)+S(gz,gz,gw)](3.34)
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for all x,y,z,u,v,w ∈ X for which gx≥ gu, gy≤ gv and gz≥ gw. If there exists x0,y0,z0 ∈ X

such that

gx0 ≤ F(x0,y0,z0), gy0 ≥ F(y0,x0,y0) and gz0 ≤ F(z0,y0,x0).

Then F has tripled fixed point in X. If u = a , v = b and w = c, then F has fixed point, that is,

there exist x ∈ X such that

x = F(x,x,x).

Proof. If we define g : X→ X be an identity mapping in Corollary 28 then result is follows. �

4. CONCLUSION

In this paper one thing is observed that Theorem 13 implies Theorem 23 but converges may

not be true. Example 24, 25 and 22 are in support of this fact. This fact is obvious because of

the property of
[
0, 1

3

)
⊂ [0,1) but converges is not true.
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