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Abstract. We consider the quasilinear parabolic system with the measurable coefficients in the specific divergent

form ∂t~u = ∇i (ai j (x, t, ~u)∇ j~u)+~b(x, t, ~u, ∇~u), where the function~u is unknown N-dimensional vector-function

defined on Ω× [0, T ], Ω⊂ Rl , l > 2. Under minimal restrictions on the structural coefficients, we obtain a priori

estimations of the weak solutions of the system and establish the solvability of the system in the Holder functional

classes. To prove the existence of the solution we apply the Leray-Schauder fixed point method, for establishing

uniqueness we employ the argument of contraction, which follows from Lipschitz conditions.

Keywords: quasilinear partial differential equation; Holder solution; regularity theory; form-bounded; heat kernel;
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1. INTRODUCTION

The subject of this article is the regularity of solutions to the boundary problems for the quasi-

linear parabolic systems of partial differential equations. The parabolic linear and quasi-linear

equations and systems have been studied for several decades, in the linear case the fundamental

results were obtained by E. DeGiorgi, J. Nash, and J. Moser, whose works provided a possibil-

ity to establish a sufficient quantity of a priori estimations for parabolic equations with rough
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coefficients to establish solvability in certain functional class. In the linear case, DeGiorgi-

Nash-Moser results [11, 12] were developed by A.O. Ladyzenskaja, V.A. Solonnikov, Q. S.

Zhang, J. A. Goldstein, and others [5, 6, 8, 37 - 40], in the quasilinear case, the situation is

more complex, some results were obtained by A.O. Ladyzenskaja, V.A. Solonnikov, and N. N.

Uralceva and viscosity solutions are studied by K. Ishii, M. Pierre, and T. Suzuki. For further

studies see the list of references [1 - 40].

We consider a quasilinear parabolic system in the specific divergent form

(1)
∂

∂ t
~u = ∑

i, j=1,...,l
∇i
(
ai j (x, t, ~u)∇ j~u

)
+~b(x, t, ~u, ∇~u) ,

where (x, t) ∈ DT = Ω× (0, T ), vector-function ~u(x, t) =
(
u1 (x, t) , ..., uN (x, t)

)
is an un-

known N-dimensional vector in clos(DT ), l ≥ 3; ~b : Ω× [0, T ]×RN ×Rl ×RN → RN is a

known vector-function. Functions ai j comprise a symmetric l × l-matrix uniformly elliptic,

namely,

(2) ν (~u)ξ
2 ≤ ai jξiξ j ≤ µ (~u)ξ

2

for all (x, t) ∈ Rl× [0, T ] and all ξ ∈ Rl .

Quasilinear parabolic systems of a more general type

(3)
∂

∂ t
~u = ∑

i, j=1,...,l
ãi j (x, t, ~u)∇i∇ j~u+~̃b(x, t, ~u, ∇~u)

can be presented in the divergent form (1) by taking

(4)
bk (x, t) = b̃k (x, t, ~u(x, t) , ∇~u(x, t))+

+
∂ ãi j(x, t, ~u(x, t))

∂um ∇ium∇ juk +
∂ ãi j(x, t, ~u(x, t))

∂xi
∇ juk,

where functions ãi j and~̃b are smooth enough, since we can calculate the full derivatives

(5)
dai j

dxd
=

∂ ãi j

∂um ∇dum +
∂ ãi j

∂xd
.

The first boundary problem for system (1) is formulated as follows: to find the function

~u(x, t) that satisfies system (1) and the boundary condition ~u|
∂ΩT={(x, t) : x∈Ω, t∈[0, T ]} = 0 and

~u|t=0 =~u(0, t) = ~φ (x) where ~φ is given function. We have to establish the dependence prop-

erties of solutions on the properties of structural coefficients of the system (1), namely, we have
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to specify classes to which must belong ai j and~b. Now, we formalize more general conditions

on the structural coefficients of the system (1)

(6) ai j (x, t, ~u)~ki~k j ≥ ν (|~u|)
∣∣∣~k∣∣∣2− γ0 (x, t)

(7)
∣∣∣ai j (x, t, ~u)~k j

∣∣∣≤ µ (|~u|)
∣∣∣~k∣∣∣+ γ1 (x, t)

(8)
∣∣∣~b(x, t, ~u, ~k

)∣∣∣≤ µ̃ (|~u|)
∣∣∣~k∣∣∣2 + γ2 (x, t)

where functions ν (τ), µ (τ) and µ̃ (τ) are positive, continuous, and restrict the growth of struc-

tural coefficients of the system (1); function ν (τ) monotone decreases; functions µ (τ) and

µ̃ (τ) monotone increase; functions γi control the singularities of the coefficients, γ0, γ1
2, γ2 ∈

PK (β ).

A function ~f : DT → RN is said to be form-boundary or belongs to the class PK (β ) if the

following condition

(9)
∫
[0, T ]

∫
Ω

∣∣∣~f~ϕ∣∣∣2 dxdt ≤ β

∫
[0, T ]

∫
Ω

|∇~ϕ|2 dxdt + c(β )
∫
[0, T ]

∫
Ω

|~ϕ|2 dxdt

holds with some positive constants β and c(β ), and all functions ~ϕ : Rl× [0, T ]→ RN , ~ϕ ∈C∞
0 .

Definition. A real-valued vector-function ~u(x, t) is called a weak solution to system (1) if

~u ∈V 2
1,0 (DT ), essmax

(x, t)∈DT
|~u(x, t)|< ∞ and satisfies the identity

(10)

∫
Ω
~u(x, t)~ϕ (x, t)dx|T0 =

=
∫
[0, T ]

∫
Ω
~u∂t~ϕdxdt−

−
∫
[0, T ]

∫
Ω

ai j (x, t, ~u)∇ j~u∇i~ϕdxdt+

+
∫
[0, T ]

∫
Ω
~b~ϕdxdt

for all ~ϕ ∈C∞
0 .

A weak solution is called a weak solution to a first boundary problem for system (1) if there

exists a limit

(11) lim
t→0

∫
Ω

~u(x, t)~ϕ (x)dx =
∫

Ω

~φ (x)~ϕ (x)dx

for all ~ϕ ∈C∞
0 .



4 MYKOLA YAREMENKO

For system (1), we consider the general and Holder classes of solutions and establish the

uniqueness of such solutions in a certain class of functions. The growth restriction on the struc-

tural coefficients is essential and cannot be weakened as we can see from the Heinz example

∂tu1−∂xxu1 = u1
((

∂xu1)2
+
(
∂xu2)2

)
∂tu2−∂xxu2 = u2

((
∂xu1)2

+
(
∂xu2)2

)
,

where functions u1 = cos(mx) and u2 = sin(mx) are solutions, however, these functions do not

satisfy the estimation max
[0, 2π]

|∇~u|. The Heinz example shows that we need additional growth

restrictions for the quasilinear systems.

For operators (λ −∆)−
1
2 γ

1
2 : L2→ L2 and (λ −∆)−1

γ : L2→ L∞ the estimation

∥∥∥(λ −∆)−
1
2 γ

1
2

∥∥∥2

2
≤
∥∥∥(λ −∆)−1

γ

∥∥∥
∞

holds for some λ = λ (ν)≥ 0, thus for γ ∈ PK (β ) sufficient that |γ|2 belongs to the Kato class

Kl
ν , which consists of all potentials γ ∈ L1

loc that satisfy
∥∥∥(λ −∆)−1 |γ|

∥∥∥
∞

≤ ν . Therefore, our

assumptions γ0, γ1
2, γ2 ∈ PK (β ) on structural coefficients include potentials with singularities

of form-boundary of the orders
√

β
l−2

2
x
|x|2
∈ PK (β ) since

( l−2
2

)2
∥∥∥|x|−1

∥∥∥2

2
≤ ‖∇‖2

2.

2. THE HOLDER CONTINUITY OF WEAK SOLUTIONS

We denote essmax
(x, t)∈DT

|~u(x, t)|= M1, ν = ν (M1) and µ̃ = µ̃ (M1).

From the definition of the weak solution, we obtain the inequality

(12)

∫
Ω
~u(x, t)~ϕ (x, t)dx|t0+

+
∫
[0, t]

∫
Ω

ai j (x, t, ~u)∇ j~u∇i~ϕdxdt ≤

≤
∫
[0, t]

∫
Ω
~u∂t~ϕdxdt+

+
∫
[0, t]

∫
Ω

(
µ̃ |∇~u|2 + γ2 (x, t)

)
|~ϕ|dxdt

for all t ∈ [0, T ].

Theorem 1. Let functions ai j and~b satisfy conditions (6)-(8) with γ0, γ1
2, γ3 ∈ PK (β ) and

γ0,∈ L1. Let function~u be a weak solution to the system (1) such that essmax
(x, t)∈DT

|~u(x, t)|=M1 <∞.

Then, there is a positive number α such that~u ∈ Hα, α

2 (DT ).
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Proof. We compose the identity

∫
[0, T ]

∫
Ω

∂t~u~ϕdxdt+

+
∫
[0, T ]

∫
Ω

ai j (x, t, ~u)∇ j~u∇i~ϕdxdt =

=
∫
[0, T ]

∫
Ω
~b~ϕdxdt

and we take ~ϕ (x, t) = ξ 2 (x, t)max{~uh (x, t)−n, 0}, where we denote ~uh the averaging at

the time variable. Applying standard technically and taking the limit as h→ 0, we obtain

1
2
∫

Ω
ξ 2 (x, t) |~un (x, t)|2 dx

∣∣∣T
0
−

−
∫
[0, T ]

∫
Ω
|~un|2 ξ ∂tξ dxdt+

+
∫
[0, T ]

∫
Ω

ai j∇ j~u∇i
(
ξ 2~un

)
dxdt =

=
∫
[0, T ]

∫
Ω
~bξ 2~undxdt.

We calculate

∫
[0, T ]

∫
Ω

ai j∇ j~un∇i
(
ξ 2~un

)
dxdt =

=
∫
[0, T ]

∫
Ω

ξ 2ai j∇ j~un∇i~undxdt +2
∫
[0, T ]

∫
Ω

ai jξ~un∇ j~un∇iξ dxdt

by applying conditions, we obtain the estimation

1
2
∫

Ω
ξ 2 (x, t) |~un (x, t)|2 dx

∣∣∣T
0
+

+ν
∫
[0, T ]

∫
Ω

ξ 2 |∇~un|2 dxdt ≤

≤
∫
[0, T ]

∫
Ω
|~un|2 ξ |∂tξ |dxdt+

+
∫
[0, T ]

∫
Ω

γ0ξ 2dxdt

+2
∫
[0, T ]

∫
Ω
(µ |∇~un|+ γ1) |~un|ξ |∇ξ |dxdt+

+
∫
[0, T ]

∫
Ω

(
µ̃ |∇~un|2 + γ2

)
ξ 2 |~un|dxdt.

Next, we write

2
∫
[0, T ]

∫
Ω

γ1 |~un|ξ |∇ξ |dxdt ≤

≤ ε
∫
[0, T ]

∫
Ω

γ1
2ξ 2dxdt + 1

ε

∫
[0, T ]

∫
Ω
|~un|2 |∇ξ |2 dxdt

and ∫
[0, T ]

∫
Ω

γ2 |~un|ξ 2dxdt ≤M1

∫
[0, T ]

∫
Ω

γ2ξ
2dxdt.
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Let Λn,ρ denote a set of all x ∈ B(ρ) such that min
k=1,...,N

uk (x) > n. Applying γ0, γ1
2, γ2 ∈

PK (β ), we have

1
2

∥∥∥ξ 2 (x, t) |~un (x, t)|2
∥∥∥2

2, B(ρ)

∣∣∣∣t2
t1

+

+ν
∫
[t1, t2]

∫
B(ρ) ξ 2 |∇~un|2 dxdt ≤

≤
∫
[t1, t2]

∫
Λn,ρ
|~un|2 ξ ∂tξ dxdt+

+2µM1
∫
[t1, t2]

∫
Λn,ρ
|∇~un|ξ |∇ξ |dxdt+

+µ̃M1
∫
[t1, t2]

∫
Λn,ρ
|∇~un|2 ξ 2dxdt+

+ĉ
(

β
∫
[t1, t2]

∫
Λn,ρ
|∇ξ |2 dxdt + c(β )

∫
[t1, t2]

∫
Λn,ρ
|ξ |2 dxdt

)
where t1, t2 ∈ [0, T ] and B(ρ)⊂Ω is a ball of radius ρ . Thus, we obtain

∥∥∥ξ 2 (x, t2) |~un (x, t2)|2
∥∥∥2

2, B(ρ)
+

+ν
∫
[t1, t2]

∫
B(ρ) ξ 2 |∇~un|2 dxdt ≤

≤
∥∥∥ξ 2 (x, t1) |~un (x, t1)|2

∥∥∥2

2, B(ρ)
+

+
_
c
∫
[t1, t2]

∫
B(ρ) |~un|2

(
ξ |∂tξ |+ |∇ξ |2

)
dxdt+

+ĉ
(

β
∫
[t1, t2]

∫
Λn,ρ
|∇ξ |2 dxdt + c(β )

∫
[t1, t2]

∫
Λn,ρ
|ξ |2 dxdt

)
,

where we chose n so that

max
B(ρ)×[t1, t2]

max
k

uk (x, t)−n≤ δ =
ν

υµ̃
.

The class B2 (DT ) consists of all functions~u(x, t) such that there is a system{
φ i (u1, ...,uN)}

i=1,...,Ñ of Ñ-functions φ i : RN→ R, i= 1, ..., Ñ, which are continuously differ-

entiable in their domains and such that functions ω i (x, t) = φ i (u1 (x, t) , ...,uN (x, t)
)
, ω i ∈

V 2
1,0 (DT ) , i = 1, ..., Ñ satisfy conditions:

1)essmax
DT

∣∣ω i (x, t)
∣∣≤ M̃, i = 1, ..., Ñ;

2) for any cylinder S = B(2ρ)× [t̃, t̃ + τ]⊂ DT and for any t0 ∈ (t̃, t̃ + τ), there is a number m

such that

osc{ωm (x, t) , DT} ≥ δ1 max
k=1,...,N

osc
{

uk (x, t) , DT

}
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and

µ




x ∈ B(ρ) : ωm (x, t0)≤

≤ essmaxωm (x, t)
DT

−δ2osc{ωm (x, t) , DT}


≥

≥ (1−δ3)clρ
l,

where we denote µ is a standard Lebesgue measure, and we assume that balls B(ρ) and B(2ρ)

are concentric and δ1, δ2, δ3 > 0, δ2, δ3 < 1;

3) there are ϑ1, ϑ2 ∈ (0, 1) and number n, so that each function ω i, i = 1, ..., Ñ satisfy the

inequalities

max
t0∈[t̃, t̃+τ]

‖ωm
n (·, t)‖2

2,B(ρ−ϑ1ρ) ≤

≤ max
t0∈[t̃, t̃+τ]

‖ωm
n (·, t̃)‖2

2,B(ρ)+

+c̆
(

1
(ϑ1ρ)2 ‖ωm

n (·, t̃)‖2
2,B(ρ)×[t̃, t̃+τ]+ ĉ

(
µ
(
Λn,ρ

)))
,

and

‖ωm
n (·, t)‖H,

2
2, B(ρ−ϑ1ρ)×[t̃, t̃+ϑ2τ] ≤

≤ c̆
(

1
(ϑ1ρ)2 +

1
(ϑ2τ)2

)
‖ωm

n (·, t̃)‖2
2,B(ρ)×[t̃, t̃+τ]+

+ĉ
(
µ
(
Λn,ρ

))
,

where we denote the Holder norm by ‖·‖H .

From the analysis, we have the following theorem.

Theorem (estimation of the oscillation). Let ~u ∈ B2 (DT ). Then, there is a positive α such

that the oscillation of the function~u estimates as

max
k=1,...,N

osc
{

uk, B(ρ̃)×
[
t̃, t̃ +ϑρ̃

2]}≤ cρ̃
−α

ρ
α

for some positive c, ϑ , where balls B(ρ) and B(ρ̃) are concentric.

Thus, we have that if ~u(x, t) satisfies the conditions of theorem 1 then ~u ∈ B2 (DT ) so there

exists α > 0 such that~u ∈ Hα, 2−1α (DT ).

3. SOLVABILITY OF THE FIRST BOUNDARY PROBLEM

We define S =
{
(x, t) ∈ Rl×R+ : {x ∈ ∂Ω, t ∈ [0, T ]}∪{(x, t) : x ∈Ω, t = 0}

}
.

Theorem 2. Let functions ai j and~b satisfy (6)-(8) and conditions

(13) ν (M1)ξ
2 ≤ ai jξiξ j ≤ µ (M1)ξ

2
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for all ξ ∈ Rl;

(14)
∣∣∣ai j (x, t, ~u)~k j

∣∣∣+ ∣∣∣∣∣∂ai j (x, t, ~u)~k j

∂uk uk

∣∣∣∣∣≤ µ

∣∣∣~k∣∣∣+ γ1 (x, t) ,

(15)
∣∣∣∣∂ai j (x, t, ~u)

∂x j
~k j

∣∣∣∣≤ µ

∣∣∣~k∣∣∣2 + γ2 (x, t) ,

(16)
∣∣∣~b(x, t, ~u, ~k

)∣∣∣≤ µ̃

∣∣∣~k∣∣∣2 + γ3 (x, t) ,

(17)
∑i

(∣∣∣ai j (x, t, ~u)~k j

∣∣∣+ ∣∣∣∣∂ai j(x, t, ~u)~k j
∂uk uk

∣∣∣∣)(1+
∣∣∣~k∣∣∣)+

+∑i, j

∣∣∣∣∂ai j(x, t, ~u)~k j
∂x j

∣∣∣∣+ ∣∣∣~b∣∣∣≤ µ

(∣∣∣~k∣∣∣+1
)2

,

(18)
∣∣∣~b(x, t, ~u, ~k

)∣∣∣≤ ω

(∣∣∣~k∣∣∣ , |~u|)(∣∣∣~k∣∣∣+ c1

)2
+ c2 (|~u|) ,

where ω

(∣∣∣~k∣∣∣ , |~u|) |~k|→∞

−→ 0 and c2 (|~u|) is a small constant.

Let function ~φ ∈C3,2 (clos(DT )) satisfies the identity

(19)
∂

∂ t
~φ = ∑

i, j=1,...,l
∇i

(
ai j

(
x, t, ~φ

)
∇ j~φ

)
+~b
(

x, t, ~φ , ∇~φ
)

on the subset

S =
{
(x, t) ∈ Rl×R+ : {x ∈ ∂Ω, t ∈ [0, T ]}∪{(x, t) : x ∈Ω, t = 0}

}
;

max
x∈Ω

|∇φ (x, 0)| < ∞ and ~φ ∈ Hα̃,2−1α̃ (clos(DT )), γ0, γ1
2, γ2 ∈ PK (β ). Then, there exists a

solution ~u ∈ Hα, 2−1α (clos(DT )) to the boundary problem ~u|S = ~φ
∣∣∣
S

for the system (1), if the

function ~b
(

x, t, ~u, ~k
)

is uniformly Lipschitz continuous at ~u and ~k, then such a solution is

unique.

Proof. Here, we provide a scheme of proof, which is based on the Leray-Schauder fixed

point principle.

We denote the quasi-linear operator

(20)
L~u = ∂

∂ t~u−∑i, j=1,...,l ai j (x, t, ~u)∇i∇ j~u−

−∑i, j=1,...,l
(
∇ j~u

)
∇i
(
ai j (x, t, ~u)

)
−~b(x, t, ~u, ∇~u) = 0,
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we put B(x, t, ~u, ∇~u) =−∑i, j=1,...,l
(
∇ j~u

)
∇i
(
ai j (x, t, ~u)

)
−~b(x, t, ~u, ∇~u), and compose a set

of linear problems

(21)
∂

∂ t~v−
(
τai j (x, t, ~w)+(1− τ)δi j

)
∇i∇ j~v+

+τB(x, t, ~w, ∇~w)− (1− τ)
(

∂

∂ t
~φ −∆~φ

)
= 0,

under condition ~v|S = ~φ
∣∣∣
S

for each τ ∈ [0, 1].

Set of problems (20) is a linear system, where ~v(x, t) is unknown function and functions

~w(x, t) are considered given.

We consider a system of linear problems

(22)
L(τ)~u = ∂

∂ t~u−∑i, j=1,...,l ∇i
((

ai j (x, t, ~u)∇ j~u
)
+(1− τ)∇i~u

)
+

−τ~b(x, t, ~u, ∇~u)− (1− τ)
(

∂

∂ t
~φ −∆~φ

)
= 0,

and boundary conditions ~u|S = ~φ
∣∣∣
S

for each τ ∈ [0, 1].

The solution~uτ =~u(τ) to the boundary problem for system (22) is a fixed point of the mapping

ϒ(~w, τ) so that ϒ(~uτ , τ) =~uτ , the operator ϒ defines the correspondence between functions ~w

and solutions of linear problems for system (21) by ~v = ϒ(~w, τ). The operator ϒ maps linear

functional space Θδ , δ > 0, which consists of all continuous functions ~w(x, t) and with the

norm given by

‖~w‖H, Θδ
= ‖~w‖H(δ ), DT

+‖∇~w‖H(δ ), DT
.

Under our conditions, the operator ϒ(τ) : ~w 7→~v depends on the parameter τ ∈ [0, 1] , the fixed

point of the operator ϒ(1) : ~w 7→~v is a solution to the boundary problem for the system (1).

Let Θδ be a space, where δ > 0 is a sufficiently small number then the theory of linear

parabolic equations guarantees the existence of~uτ such that

max
DT
|~uτ | ≤M1,

max
DT
|∇~uτ | ≤M2,

‖~uτ‖H, Θα
= ‖~uτ‖H(α), DT

+‖∇~uτ‖H(α), DT
≤M3

with some α ∈ (0, 1) and for all solutions~uτ to the problems (22).
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Let ε be a strictly positive number, we consider the operator ϒ on the subspace E ⊂ Θδ that

consists of all function ~w ∈Θδ such that

max
DT
|~w| ≤M1 + ε,

max
DT
|∇~w| ≤M2 + ε,

‖~w‖H, Θα
≤M3 + ε.

All fixed points~uτ of mapping ϒ belong to E.

Straightforward calculations yield that ϒ(~w, τ) is a set of uniformly equicontinuous at ~w

and τ , and uniformly compact operators. Thus, for each τ ∈ [0, 1], there exists a fixed point

~uτ = ϒ(~uτ , τ), which is a solution to the problem (22) that belongs to Hλ , 2−1λ (clos(DT )). The

solution to (22) is a solution to (21) under the condition ~w =~uτ therefore~v =~uτ for all τ ∈ [0, 1]

and τ = 1 proves the existence of the solution to the boundary problem for (1).

The uniqueness can be proven by contradiction assuming that there are two distinct solutions

~u1 and ~u2 to the boundary problem ~u|S = ~φ
∣∣∣
S

for the system (1). Then, functions ~u1 and ~u2

must satisfy the integral identity

∫
[0, T ]

∫
Ω

(
∂t~u~ϕ +ai j (x, t, ~u)∇ j~u∇i~ϕ

)
dxdt =

=
∫
[0, T ]

∫
Ω
~b~ϕdxdt

for all functions ~ϕ ∈C∞
0 which equal zero on S. We subtract from the first identity the second

and obtain

(23)

∫
[0, T ]

∫
Ω

(
∂t~w~ϕ +

(
ãi j∇ j~w+Ai~w

)
∇i~ϕ

)
dxdt =

=
∫
[0, T ]

∫
Ω
(Bi∇i~w+B~w)~ϕdxdt

where ~w≡~u1−~u2, and we denote

ai j (x, t, ~u1)∇ j~u1−ai j (x, t, ~u2)∇ j~u2 =

= ∇ j~w
∫
[0, 1] ai j (x, t, τ~u1 +(1− τ)~u2)dτ+

+wk ∫
[0, 1]

∂ai j(x, t, τ~u1+(1−τ)~u2)

∂uk dτ =

= ãi j∇ j~w+Ai~w
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and
~b(x, t, ~u1, ∇~u1)−~b(x, t, ~u2, ∇~u2) =

= ∇iwk ∫
[0, 1]

∂~b(x, t, τ~u1+(1−τ)~u2, τ∇~u1+(1−τ)∇~u2)
∂∇iuk +

+wk ∫
[0, 1]

∂~b(x, t, τ~u1+(1−τ)~u2, τ∇~u1+(1−τ)∇~u2)
∂uk dτ =

= Bi∇i~w+B~w.

Applying the linear theory to (23), we obtain that there exists a unique solution to (23) ~w≡ 0

so that the uniqueness is proven.

Now, we have to estimate the max
DT
|∇~u(x, t)| by max

DT
|~u(x, t)| = M1 and functions of the

coefficients. We consider an integral identity

(24)

∫
[0, t]

∫
Ω

(
∂t~u~ϕ +ai j (x, t, ~u)∇ j~u∇i~ϕ

)
dxdt =

=
∫
[0, T ]

∫
Ω
~b~ϕdxdt

for all t ∈ [0, T ]. We take ϕk (x, t) = uk (x, t)ξ 2 (x)exp
(

λ |~u(x, t)|2
)

where ξ is cutoff for Ω.

We have
1

2λ

∫
Ω

ξ 2 exp
(

λ |~u|2
)

dx
∣∣∣T
0
+

+λ

2
∫
[0, t]

∫
Ω

ai jξ
2 exp

(
λ |~u|2

)
∇i

(
|~u|2
)

∇ j

(
|~u|2
)

dxdt+

+
∫
[0, t]

∫
Ω

ai jξ exp
(

λ |~u|2
)

∇iξ ∇ j

(
|~u|2
)

dxdt+

+
∫
[0, t]

∫
Ω

ai jξ
2 exp

(
λ |~u|2

)
∇i~u∇ j~udxdt =

=
∫
[0, T ]

∫
Ω
~b~uξ 2 exp

(
λ |~u|2

)
dxdt,

applying conditions and γ0, γ2
1 , γ3 ∈ PK (β ), we obtain an estimation∫

[0, T ]

∫
Ω

ξ
2

∑
k=1,...,N

∑
i=1,...,l

(
∇iuk

)2
dxdt ≤ const.

Furthermore, in (24), we take ϕk = ∇m
(
ξ ∇muk) and obtain

1
2
∫
[0, t]

∫
Ω

ξ ∂t

(
∑k=1,...,N ∑i=1,...,l

(
∇iuk)2

)
dxdt+

+
∫
[0, t]

∫
Ω

ai jξ (∇m∇i~u)
(
∇m∇ j~u

)
dxdt+

+1
2
∫
[0, t]

∫
Ω

ai j (∇iξ )∇ j

(
∑k=1,...,N ∑i=1,...,l

(
∇iuk)2

)
dxdt+

+
∫
[0, t]

∫
Ω

(
∇mai j

)
(∇iξ )

(
∇ j~u

)
(∇m~u)dxdt+

+
∫
[0, t]

∫
Ω

(
∇mai j

)
ξ
(
∇ j~u

)
(∇i∇m~u)dxdt+

+
∫
[0, T ]

∫
Ω
~b(ξ ∆~u+(∇m~u)(∇mξ ))dxdt = 0,
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where, as always,

~b(ξ ∆~u+(∇m~u)(∇mξ ))≡ ∑
k=1,....,N

bk

(
ξ ∆uk + ∑

m=1,...,l

(
∇muk

)
(∇mξ )

)
.

Next, we assume ξ = 2
(

∑k=1,...,N ∑i=1,...,l
(
∇iuk)2

)υ

η2 where the function η (x) is cutoff for

the ball B(ρ)⊂Ω, υ ≥ 0. Applying conditions, we estimate

1
1+υ

∫
Ω

η2
(

∑k=1,...,N ∑i=1,...,l
(
∇iuk)2

)υ+1
dx
∣∣∣∣t
0
+

+2ν
∫
[0, t]

∫
Ω

η2
(

∑k=1,...,N ∑i=1,...,l
(
∇iuk)2

)υ

|∇∇~u|2 dxdt+

+νυ
∫
[0, t]

∫
Ω

η2
(

∑k=1,...,N ∑i=1,...,l
(
∇iuk)2

)υ−1 ∣∣∣∇(∑k=1,...,N ∑i=1,...,l
(
∇iuk)2

)∣∣∣2 dxdt ≤

≤ c(υ)
(∫

[0, t]
∫

Ω

(
∑k=1,...,N ∑i=1,...,l

(
∇iuk)2

)υ+1
|∇η |2 dxdt +

+
∫
[0, t]

∫
Ω

(
∑k=1,...,N ∑i=1,...,l

(
∇iuk)2

)υ+2
η2dxdt+

+c
∫
[0, t]

∫
Ω

(
η2 +β |∇η |2

)
dxdt

)
.

The inequality

∫
B(ρ)η2

(
∑k=1,...,N ∑i=1,...,l

(
∇iuk)2

)υ+2
dx≤

≤ cρα

(∫
B(ρ)η2

(
∑k=1,...,N ∑i=1,...,l

(
∇iuk)2

)υ

|∇∇~u|2 dx +

+
∫

B(ρ)

(
∑k=1,...,N ∑i=1,...,l

(
∇iuk)2

)υ+1
|∇η |2 dxdt

)

holds for small enough ρ and υ > 0. Therefore, we have

1
1+υ

∫
B(ρ)η2

(
∑k=1,...,N ∑i=1,...,l

(
∇iuk)2

)υ+1
dx
∣∣∣∣t
0
+

+2−1ν
∫
[0, t]

∫
B(ρ)η2

(
∑k=1,...,N ∑i=1,...,l

(
∇iuk)2

)υ

|∇∇~u|2 dxdt+

+2−1ν
∫
[0, t]

∫
B(ρ)η2

(
∑k=1,...,N ∑i=1,...,l

(
∇iuk)2

)υ+2
dxdt ≤

≤ c(υ)
(∫

[0, t]
∫

B(ρ)

(
∑k=1,...,N ∑i=1,...,l

(
∇iuk)2

)υ+1
|∇η |2 dxdt +

+c
∫
[0, t]

∫
B(ρ)

(
η2 +β |∇η |2

)
dxdt

)
,

thus max
t∈[0, T ]

∫
Ω̃

(
∑k=1,...,N ∑i=1,...,l

(
∇iuk)2

)υ+1
dxdt ≤ c

(
υ , Ω̃

)
.
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By taking ~ϕ (x, t) = ∇m
~ξ (x, t) where the function ~ξ equals zero near S, we have

∫
[0, t]

∫
Ω
~ξ ∂t∇m~udxdt+

+
∫
[0, t]

∫
Ω

ai j
(
∇m∇ j~u

)(
∇i
~ξ
)

dxdt =

=
∫
[0, t]

∫
Ω
~Ψi,m

(
∇i
~ξ
)

dxdt

where we denote

~Ψi,m =−
∂ai j

∂xm
∇i~u−

∂ai j

∂uk ∇muk
∇i~u+~bδim,

denoting v = ∇muk, k = 1, ....,N; m = 1, ...., l, we obtain that functions v ∈ V 2
1,0 (DT ) as

solutions to the linear equations

∂tv−∇ j

(
ai j∇iv−Ψi,m

k
)
= 0.

Applying conditions theorem 2, from linear theory, we finally obtain

max
DT
|∇~u(x, t)| ≤ const (ν , µ, µ̃) ,

where we applied standard argument extending estimation to the boundary which follows from

previous inequalities.
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